1,402 research outputs found

    The prevalence of insomnia in the general population in China: A meta-analysis

    Get PDF
    This is the first meta-analysis of the pooled prevalence of insomnia in the general population of China. A systematic literature search was conducted via the following databases: PubMed, PsycINFO, EMBASE and Chinese databases (China National Knowledge Interne (CNKI), WanFang Data and SinoMed). Statistical analyses were performed using the Comprehensive Meta-Analysis program. A total of 17 studies with 115,988 participants met the inclusion criteria for the analysis. The pooled prevalence of insomnia in China was 15.0% (95% Confidence interval [CI]: 12.1%-18.5%). No significant difference was found in the prevalence between genders or across time period. The pooled prevalence of insomnia in population with a mean age of 43.7 years and older (11.6%; 95% CI: 7.5%-17.6%) was significantly lower than in those with a mean age younger than 43.7 years (20.4%; 95% CI: 14.2%-28.2%). The prevalence of insomnia was significantly affected by the type of assessment tools (Q = 14.1, P = 0.001). The general population prevalence of insomnia in China is lower than those reported in Western countries but similar to those in Asian countries. Younger Chinese adults appear to suffer from more insomnia than older adults

    A construction of bent functions from plateaued functions

    Get PDF
    In this presentation, a technique for constructing bent functions from plateaued functions is introduced and analysed. This generalizes earlier techniques for constructing bent from near-bent functions. Using this construction, we obtain a big variety of inequivalent bent functions, some weakly regular and some non-weakly regular. Classes of bent function with some additional properties that enable the construction of strongly regular graphs are constructed, and explicit expressions for bent functions with maximal degree are presented

    Beyond advocacy: making space for conservation scientists in public debate

    Get PDF
    The topic of advocacy by scientists has been debated for decades, yet there is little agreement about whether scientists can or should be advocates. The fear of crossing a line into advocacy continues to hold many scientists back from contributing to public discourse, impoverishing public debate about important issues. We believe that progress in this debate is limited by a misconception about the relationship between scientific integrity and objectivity. We begin by unpacking this relationship and debunking three common misconceptions about advocacy by scientists: namely, that advocacy is harmful to scientific credibility, beyond the scope of science, and incompatible with science, which is value-free. We propose new ways of thinking about responsible advocacy by conservation scientists, drawing on practices from the health sciences, where researchers and professional bodies are empowered to act as health advocates.In so doing, we hope to open further space for conservation scientists to actively and legitimately engage in public debate about conservation issues

    Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver.

    Get PDF
    Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy

    The Cloud Absorption Radiometer HDF Data User's Guide

    Get PDF
    The purpose of this document is to describe the Cloud Absorption Radiometer (CAR) Instrument, methods used in the CAR Hierarchical Data Format (HDF) data processing, the structure and format of the CAR HDF data files, and methods for accessing the data. Examples of CAR applications and their results are also presented. The CAR instrument is a multiwavelength scanning radiometer that measures the angular distributions of scattered radiation

    DNA hybridization to mismatched templates: a chip study

    Get PDF
    High-density oligonucleotide arrays are among the most rapidly expanding technologies in biology today. In the {\sl GeneChip} system, the reconstruction of the target concentration depends upon the differential signal generated from hybridizing the target RNA to two nearly identical templates: a perfect match (PM) and a single mismatch (MM) probe. It has been observed that a large fraction of MM probes repeatably bind targets better than the PMs, against the usual expectation from sequence-specific hybridization; this is difficult to interpret in terms of the underlying physics. We examine this problem via a statistical analysis of a large set of microarray experiments. We classify the probes according to their signal to noise (S/NS/N) ratio, defined as the eccentricity of a (PM, MM) pair's `trajectory' across many experiments. Of those probes having large S/NS/N (>3>3) only a fraction behave consistently with the commonly assumed hybridization model. Our results imply that the physics of DNA hybridization in microarrays is more complex than expected, and they suggest new ways of constructing estimators for the target RNA concentration.Comment: 3 figures 1 tabl
    corecore