17,196 research outputs found

    Multipole Gravitational Lensing and High-order Perturbations on the Quadrupole Lens

    Full text link
    An arbitrary surface mass density of gravitational lens can be decomposed into multipole components. We simulate the ray-tracing for the multipolar mass distribution of generalized SIS (Singular Isothermal Sphere) model, based on the deflection angles which are analytically calculated. The magnification patterns in the source plane are then derived from inverse shooting technique. As have been found, the caustics of odd mode lenses are composed of two overlapping layers for some lens models. When a point source traverses such kind of overlapping caustics, the image numbers change by \pm 4, rather than \pm 2. There are two kinds of images for the caustics. One is the critical curve and the other is the transition locus. It is found that the image number of the fold is exactly the average value of image numbers on two sides of the fold, while the image number of the cusp is equal to the smaller one. We also focus on the magnification patterns of the quadrupole (m = 2) lenses under the perturbations of m = 3, 4 and 5 mode components, and found that one, two, and three butterfly or swallowtail singularities can be produced respectively. With the increasing intensity of the high-order perturbations, the singularities grow up to bring sixfold image regions. If these perturbations are large enough to let two or three of the butterflies or swallowtails contact, eightfold or tenfold image regions can be produced as well. The possible astronomical applications are discussed.Comment: 24 pages, 6 figure

    Magnification relations of quad lenses and applications on Einstein crosses

    Full text link
    In this work, we mainly study the magnification relations of quad lens models for cusp, fold and cross configurations. By dividing and ray-tracing in different image regions, we numerically derive the positions and magnifications of the four images for a point source lying inside of the astroid caustic. Then, based on the magnifications, we calculate the signed cusp and fold relations for the singular isothermal elliptical lenses. The signed fold relation map has positive and negative regions, and the positive region is usually larger than the negative region as has been confirmed before. It can also explain that for many observed fold image pairs, the fluxes of the Fermat minimum images are apt to be larger than those of the saddle images. We define a new quantity cross relation which describes the magnification discrepancy between two minimum images and two saddle images. Distance ratio is also defined as the ratio of the distance of two saddle images to that of two minimum images. We calculate the cross relations and distance ratios for nine observed Einstein crosses. In theory, for most of the quad lens models, the cross relations decrease as the distance ratios increase. In observation, the cross relations of the nine samples do not agree with the quad lens models very well, nevertheless, the cross relations of the nine samples do not give obvious evidence for anomalous flux ratio as the cusp and fold types do. Then, we discuss several reasons for the disagreement, and expect good consistencies for more precise observations and better lens models in the future.Comment: 12 pages, 11 figures, accepted for publication in MNRA

    Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyl Contamination in DaTong City, China

    Get PDF

    Seamless handover in software-defined satellite networking

    Get PDF
    Satellites have largely been designed as application specific and isolated for the past decades. Though with certain benefits, it might lead to resource under utilization and limited satellite applications. As an emerging networking technology, software-defined networking (SDN) has recently been introduced into satellite networks. In this letter, we propose a software defined satellite networking (SDSN) architecture, which simplifies networking among versatile satellites and enables new protocols to be easily tested and deployed. Particularly, we propose a seamless handover mechanism based on SDSN, and conduct physical layer simulation, which shows significant improvement over the existing hard handover and hybrid handover mechanisms in terms of handover latency, throughput and quality of experience of users

    Bulk Fermi surface coexistence with Dirac surface state in Bi2_2Se3_3: a comparison of photoemission and Shubnikov-de Haas measurements

    Full text link
    Shubnikov de Haas (SdH) oscillations and Angle Resolved PhotoEmission Spectroscopy (ARPES) are used to probe the Fermi surface of single crystals of Bi2Se3. We find that SdH and ARPES probes quantitatively agree on measurements of the effective mass and bulk band dispersion. In high carrier density samples, the two probes also agree in the exact position of the Fermi level EF, but for lower carrier density samples discrepancies emerge in the position of EF. In particular, SdH reveals a bulk three-dimensional Fermi surface for samples with carrier densities as low as 10^17cm-3. We suggest a simple mechanism to explain these differences and discuss consequences for existing and future transport studies of topological insulators.Comment: 5 mages, 5 figure

    Wikiglass: a learning analytic tool for visualizing collaborative wikis of secondary school students

    Get PDF
    Poster SessionThis demo presents Wikiglass, a learning analytic tool for visualizing the statistics and timelines of collaborative Wikis built by secondary school students during their group project in inquiry-based learning. The tool adopts a modular structure for the flexibility of reuse with different data sources. The client side is built with the Model-View-Controller framework and the AngularJS library whereas the server side manages the database and data sources. The tool is currently used by secondary teachers in Hong Kong and is undergoing evaluation and improvement.published_or_final_versio

    STAR:Spatio-temporal taxonomy-aware tag recommendation for citizen complaints

    Get PDF
    In modern cities, complaining has become an important way for citizens to report emerging urban issues to governments for quick response. For ease of retrieval and handling, government officials usually organize citizen complaints by manually assigning tags to them, which is inefficient and cannot always guarantee the quality of assigned tags. This work attempts to solve this problem by recommending tags for citizen complaints. Although there exist many studies on tag recommendation for textual content, few of them consider two characteristics of citizen complaints, i.e., the spatio-temporal correlations and the taxonomy of candidate tags. In this paper, we propose a novel Spatio-Temporal Taxonomy-Aware Recommendation model (STAR), to recommend tags for citizen complaints by jointly incorporating spatio-temporal information of complaints and the taxonomy of candidate tags. Specifically, STAR first exploits two parallel channels to learn representations for textual and spatio-temporal information. To effectively leverage the taxonomy of tags, we design chained neural networks that gradually refine the representations and perform hierarchical recommendation under a novel taxonomy constraint. A fusion module is further proposed to adaptively integrate contributions of textual and spatio-temporal information in a tag-specific manner. We conduct extensive experiments on a real-world dataset and demonstrate that STAR significantly performs better than state-of-the-art methods. The effectiveness of key components in our model is also verified through ablation studies
    • …
    corecore