587 research outputs found

    Boxed up and locked up, safe and tight! Making the case for unattended electronic locker bank logistics for an innovative solution to NHS hospital supplies (UK)

    Get PDF
    YesThe lack of separation between urgent and non-urgent medical goods encourages sub-optimal vehicle fleet operations owing to the time critical nature of urgent items. An unattended electronic locker bank, to which individual urgent items can be delivered thereby separating urgent and non-urgent supply, was proposed for the Great Ormond Street Hospital in London, UK. This concept was quantified using ‘basic’ and ‘intuitive’ hill climbing optimisation models; and qualitatively using staff interviews and expert reviews. Results indicated that a locker bank with a fixed height (1.7 m) and depth (0.8 m) required a length of 4 m (basic model) and 3.63 m (intuitive model), to accommodate 100% of urgent consignments for a typical week. Staff interviews indicated the wider benefits such as staff personal deliveries

    A prototype model for evaluating SKA-LOW station calibration

    Get PDF
    The Square Kilometre Array telescope at low-frequency (SKA-Low) will be a phased array telescope supporting a wide range of science cases covering the frequency band 50 - 350 MHz, while at the same time asking for high sensitivity and excellent characteristics. These extremely challenging requirements resulted in a design using 512 groups of 256 log periodic dual polarized antennas each (where each group is called “station”), for a total of 131072 antennas. The 512 stations are randomly distributed mostly within a dense area around the centre of the SKA-Low, and then in 3 arms having 16 station clusters each. In preparation for the SKA Phase 1 (SKA1) System Critical Design Review (CDR), prototype stations were deployed at the Murchison Radio-astronomy Observatory (MRO) site (Western Australia) near the Murchison Widefield Array (MWA) radio telescope. The project involved multiple parties in an International collaboration building and testing different prototypes of the SKA1-Low station near the actual site. This resulted in both organisational and logistic challenges typical of a deployment of the actual telescope. The test set-up involved a phased build-up of the complex station of log-periodic antennas, by starting from the deployment of 48 antennas and related station signal processing (called AAVS1.5, where AAVS stands for Aperture Array Verification System), followed by expansion to a full station (AAVS2.0). As reference a station with dipole antennas EDA2 (EDA: Engineering Development Array) was deployed. This test set-up was used for an extensive test and evaluation programme. All test antenna configurations were simulated in detail by electromagnetic (EM) models, and the prediction of the models was further verified by appropriate tests with a drone-based radio frequency source. Astronomical observations on Sun and galaxy transit were performed with calibrated stations of both EDA2, AAVS1.5 and AAVS2.0. All 3 configurations were calibrated. EM modelling and calibration results for the full station AAVS2.0 and EM verification for the AAVS1.5 station are presented. The comparisons between the behaviour of the log-periodic antennas and the dipoles have advanced our understanding the calibration quality and the technological maturity of the future SKA1-Low array

    Screening a protein kinase inhibitor library against <i>Plasmodium falciparum</i>

    Get PDF
    Abstract Background Protein kinases have been shown to be key drug targets, especially in the area of oncology. It is of interest to explore the possibilities of protein kinases as a potential target class in Plasmodium spp., the causative agents of malaria. However, protein kinase biology in malaria is still being investigated. Therefore, rather than assaying against individual protein kinases, a library of 4731 compounds with protein kinase inhibitor-like scaffolds was screened against the causative parasite, Plasmodium falciparum. This approach is more holistic and considers the whole kinome, making it possible to identify compounds that inhibit more than one P. falciparum protein kinase, or indeed other malaria targets. Results As a result of this screen, 9 active compound series were identified; further validation was carried out on 4 of these series, with 3 being progressed into hits to lead chemistry. The detailed evaluation of one of these series is described. Discussion This screening approach proved to be an effective way to identify series for further optimisation against malaria. Compound optimisation was carried out in the absence of knowledge of the molecular target. Some of the series had to be halted for various reasons. Mode of action studies to find the molecular target may be useful when problems prevent further chemical optimisation. Conclusions Progressible series were identified through phenotypic screening of a relatively small focused kinase scaffold chemical library

    SN 2009kf : a UV bright type IIP supernova discovered with Pan-STARRS 1 and GALEX

    Full text link
    We present photometric and spectroscopic observations of a luminous type IIP Supernova 2009kf discovered by the Pan-STARRS 1 (PS1) survey and detected also by GALEX. The SN shows a plateau in its optical and bolometric light curves, lasting approximately 70 days in the rest frame, with absolute magnitude of M_V = -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of 9000km/s at 61 days after discovery which is extremely high for a type IIP SN. SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a slow evolution 10-20 days after optical discovery. The NUV and optical luminosity at these epochs can be modelled with a black-body with a hot effective temperature (T ~16,000 K) and a large radius (R ~1x10^{15} cm). The bright bolometric and NUV luminosity, the lightcurve peak and plateau duration, the high velocities and temperatures suggest that 2009kf is a type IIP SN powered by a larger than normal explosion energy. Recently discovered high-z SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV luminosities due to the interaction of SN ejecta with a dense circumstellar medium (CSM). UV bright SNe similar to SN 2009kf could also account for these high-z events, and its absolute magnitude M_NUV = -21.5 +/- 0.5 mag suggests such SNe could be discovered out to z ~2.5 in the PS1 survey.Comment: Accepted for publication in APJ

    The giant lobes of Centaurus A observed at 118 MHz with the Murchison Widefield Array

    Get PDF
    We present new wide-field observations of Centaurus A (Cen A) and the surrounding region at 118MHz with the Murchison Widefield Array (MWA) 32-tile prototype, with which we investigate the spectral-index distribution of Cen A's giant radio lobes.We compa

    SkyMapper and the Southern Sky Survey

    Full text link
    This paper presents the design and science goals for the SkyMapper telescope. SkyMapper is a 1.3m telescope featuring a 5.7 square degree field-of-view Cassegrain imager commissioned for the Australian National University's Research School of Astronomy and Astrophysics. It is located at Siding Spring Observatory, Coonabarabran, NSW, Australia and will see first light in late 2007. The imager possesses 16kx16k 0.5 arcsec pixels. The primary scientific goal of the facility is to perform the Southern Sky Survey, a six colour and multi-epoch (4 hour, 1 day, 1 week, 1 month, 1 year sampling) photometric survey of the southerly 2pi steradians to g~23 mag. The survey will provide photometry to better than 3% global accuracy and astrometry to better than 50 mas. Data will be supplied to the community as part of the Virtual Observatory effort. The survey will take five years to complete

    On the complete classification of the unitary N=2 minimal superconformal field theories

    Get PDF
    Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each modular invariant candidate of a partition function for such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments.Comment: 53 pages; Latex; minor changes in v2: intro expanded, references added, typos corrected, footnote added on p31; renumbering of sections; main theorem reformulated for clarity, but contents unchanged. Minor revisions in v3: typos corrected, footnotes 5, 6 added, lemma 1 and section 3.3.2 rewritten for greater generality, section 3.3 review removed. To appear in Comm. Math. Phy
    • 

    corecore