272 research outputs found

    Heisenberg antiferromagnets with uniaxial exchange and cubic anisotropies in a field

    Full text link
    Classical Heisenberg antiferromagnets with uniaxial exchange anisotropy and a cubic anisotropy term in a field on simple cubic lattices are studied with the help of ground state considerations and extensive Monte Carlo simulations. Especially, we analyze the role of non-collinear structures of biconical type occurring in addition to the well-known antiferromagnetic and spin-flop structures. Pertinent phase diagrams are determined, and compared to previous findings.Comment: 14 pages, 8 figure

    Wetting and interfacial adsorption in the Blume-Capel model on the square lattice

    Full text link
    We study the Blume-Capel model on the square lattice. To allow for wetting and interfacial adsorption, the spins on opposite boundaries are fixed in two different states, "+1" and "-1", with reduced couplings at one of the boundaries. Using mainly Monte Carlo techniques, of Metropolis and Wang-Landau type, phase diagrams showing bulk and wetting transitions are determined. The role of the non-boundary state, "0", adsorbed preferably at the interface between "-1" and "+1" rich regions, is elucidated.Comment: 7 pages, 8 figures, minor corrections to previous versio

    Critical Binder cumulant for isotropic Ising models on square and triangular lattices

    Full text link
    Using Monte Carlo techniques, the critical Binder cumulant U* of isotropic nearest-neighbour Ising models on square and triangular lattices is studied. For rectangular shapes, employing periodic boundary conditions, U* is found to show the same dependence on the aspect ratio for both lattice types. Similarly, applying free boundary conditions for systems with square as well as circular shapes for both lattices, the simulational findings are also consistent with the suggestion that, for isotropic Ising models with short-range interactions, U* depends on the shape and the boundary condition, but not on the lattice structure.Comment: 7 pages, 4 figures, submitted to J. Stat. Mec

    Critical Binder cumulant in two-dimensional anisotropic Ising models

    Full text link
    The Binder cumulant at the phase transition of Ising models on square lattices with various ferromagnetic nearest and next-nearest neighbour couplings is determined using mainly Monte Carlo techniques. We discuss the possibility to relate the value of the critical cumulant in the isotropic, nearest neighbour and in the anisotropic cases to each other by means of a scale transformation in rectangular geometry, to pinpoint universal and nonuniversal features.Comment: 7 pages, 4 figures, submitted to J. Phys.

    Monte Carlo Study of Mixed-Spin S=(1/2,1) Ising Ferrimagnets

    Full text link
    We investigate Ising ferrimagnets on square and simple-cubic lattices with exchange couplings between spins of values S=1/2 and S=1 on neighbouring sites and an additional single-site anisotropy term on the S=1 sites. Based mainly on a careful and comprehensive Monte Carlo study, we conclude that there is no tricritical point in the two--dimensional case, in contradiction to mean-field predictions and recent series results. However, evidence for a tricritical point is found in the three-dimensional case. In addition, a line of compensation points is found for the simple-cubic, but not for the square lattice.Comment: 14 pages, 11 figure

    Quantum phase transitions of the diluted O(3) rotor model

    Get PDF
    We study the phase diagram and the quantum phase transitions of a site-diluted two-dimensional O(3) quantum rotor model by means of large-scale Monte-Carlo simulations. This system has two quantum phase transitions, a generic one for small dilutions, and a percolation transition across the lattice percolation threshold. We determine the critical behavior for both transitions and for the multicritical point that separates them. In contrast to the exotic scaling scenarios found in other random quantum systems, all these transitions are characterized by finite-disorder fixed points with power-law scaling. We relate our findings to a recent classification of phase transitions with quenched disorder according to the rare region dimensionality, and we discuss experiments in disordered quantum magnets.Comment: 11 pages, 14 eps figures, final version as publishe

    Relaxation of Surface Profiles by Evaporation Dynamics

    Full text link
    We present simulations of the relaxation towards equilibrium of one dimensional steps and sinusoidal grooves imprinted on a surface below its roughening transition. We use a generalization of the hypercube stacking model of Forrest and Tang, that allows for temperature dependent next-nearest-neighbor interactions. For the step geometry the results at T=0 agree well with the t^(1/4) prediction of continuum theory for the spreading of the step. In the case of periodic profiles we modify the mobility for the tips of the profile and find the approximate solution of the resulting free boundary problem to be in reasonable agreement with the T=0 simulations.Comment: 6 pages, Revtex, 5 Postscript figures, to appear in PRB 15, October 199

    Classical and quantum anisotropic Heisenberg antiferromagnets

    Full text link
    We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding, in the quantum lattice gas description, to supersolid) phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.Comment: 13 pages, 14 figures, conferenc

    Boundary critical behaviour of two-dimensional random Ising models

    Full text link
    Using Monte Carlo techniques and a star-triangle transformation, Ising models with random, 'strong' and 'weak', nearest-neighbour ferromagnetic couplings on a square lattice with a (1,1) surface are studied near the phase transition. Both surface and bulk critical properties are investigated. In particular, the critical exponents of the surface magnetization, 'beta_1', of the correlation length, 'nu', and of the critical surface correlations, 'eta_{\parallel}', are analysed.Comment: 16 pages in ioplppt style, 7 ps figures, submitted to J. Phys.

    Determination of the Critical Exponents for the Isotropic-Nematic Phase Transition in a System of Long Rods on Two-dimensional Lattices: Universality of the Transition

    Full text link
    Monte Carlo simulations and finite-size scaling analysis have been carried out to study the critical behavior and universality for the isotropic-nematic phase transition in a system of long straight rigid rods of length kk (kk-mers) on two-dimensional lattices. The nematic phase, characterized by a big domain of parallel kk-mers, is separated from the isotropic state by a continuous transition occurring at a finite density. The determination of the critical exponents, along with the behavior of Binder cumulants, indicate that the transition belongs to the 2D Ising universality class for square lattices and the three-state Potts universality class for triangular lattices.Comment: 7 pages, 8 figures, uses epl2.cls, to appear in Europhysics Letter
    corecore