68 research outputs found

    Making it in academic psychology: Demographic and personality correlates of eminence

    Get PDF
    Citations to published work, personality, and demographic characteristics were examined in a sample of male and female academic psychologists. A large sex difference was found in citations with men receiving significantly more recognition. Reputational rankings of graduate school and current institution were significantly related to citations, as were components of achievement motivation. Mastery and work needs were positively related to citations while competitiveness was negatively associated with the criterion. A model of attainment in psychology is proposed and possible explanations for the differential recognition of women are explored

    Family Variables and Reading

    Full text link
    others of poor and average readers in Japan, Taiwan and the United States were iterviewed about their child-rearing practices, attitudes, and beliefs, and their children's current and earlier experiences. Poor readers represented the lowest fifth percentile in reading scores; they were matched by classroom, sex, and age with average readers; i.e., children who obtained reading scores within one standard deviation from the mean. The groups seldom differed significantly according to environmental variables and parent-child interactions. Maternal ratings of cognitive and achievement variables differentiated both the children in the two groups and the mothers themselves. Maternal beliefs and descriptions of how children use time also differed between the two groups. Notable was the absence of significant interactions between country and reading level.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68579/2/10.1177_002221948401700305.pd

    Denitrification likely catalyzed by endobionts in an allogromiid foraminifer

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 951–960, doi:10.1038/ismej.2011.171.Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N2) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear and it is possible that the ability to perform complete denitrification is due to symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions. These associations may have been a driving force for early foraminiferal diversification, which is thought to have occurred in the Neoproterozoic when anoxia was widespread.This research was supported by NSF grant EF-0702491 to JMB, KLC and VPE; some ship support was provided by NSF MCB-0604084 to VPE and JMB.2012-06-0

    Proteomic Analysis of Grape Berry Cell Cultures Reveals that Developmentally Regulated Ripening Related Processes Can Be Studied Using Cultured Cells

    Get PDF
    The original publication is available at http:/www.plosone.orgBackground: This work describes a proteomics profiling method, optimized and applied to berry cell suspensions to evaluate organ-specific cultures as a platform to study grape berry ripening. Variations in berry ripening within a cluster(s) on a vine and in a vineyard are a major impediment towards complete understanding of the functional processes that control ripening, specifically when a characterized and homogenous sample is required. Berry cell suspensions could overcome some of these problems, but their suitability as a model system for berry development and ripening needs to be established first. Methodology/Principal Findings: In this study we report on the proteomic evaluation of the cytosolic proteins obtained from synchronized cell suspension cultures that were established from callus lines originating from green, véraison and ripe Vitis vinifera berry explants. The proteins were separated using liquid phase IEF in a Microrotofor cell and SDS PAGE. This method proved superior to gel-based 2DE. Principal component analysis confirmed that biological and technical repeats grouped tightly and importantly, showed that the proteomes of berry cultures originating from the different growth/ripening stages were distinct. A total of twenty six common bands were selected after band matching between different growth stages and twenty two of these bands were positively identified. Thirty two % of the identified proteins are currently annotated as hypothetical. The differential expression profile of the identified proteins, when compared with published literature on grape berry ripening, suggested common trends in terms of relative abundance in the different developmental stages between real berries and cell suspensions. Conclusions: The advantages of having suspension cultures that accurately mimic specific developmental stages are profound and could significantly contribute to the study of the intricate regulatory and signaling networks responsible for berry development and ripening. © 2011 Sharathchandra et al.Publishers' Versio

    Psychological and social effects of orthodontic treatment

    Full text link
    Adolescents with commonly occurring forms of malocclusion often are presumed to be at risk for negative self-esteem and social maladjustment. A randomized control group design was used to assess the psychosocial effects of orthodontic treatment for esthetic impairment. Ninety-three participants, 11 to 14 years old, with mild to moderate malocclusions, were randomly assigned to receive orthodontic treatment immediately or after serving as delayed controls. A battery of psychological and social measures was administered before treatment, during treatment, and three times after completion of treatment, the last occurring one year after termination. Repeated measures analyses of variance assessed group differences at the five time points. Parent-, peer-, and self-evaluations of dental-facial attractiveness significantly improved after treatment, but treatment did not affect parent- and self-reported social competency or social goals, nor subjects' self-esteem. In summary, dental-specific evaluations appear to be influenced by treatment, while more general psychosocial responses are not.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44814/1/10865_2005_Article_BF01856884.pd

    Recent advances of metabolomics in plant biotechnology

    Get PDF
    Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants

    Bioreactor for microalgal cultivation systems: strategy and development

    Get PDF
    Microalgae are important natural resources that can provide food, medicine, energy and various bioproducts for nutraceutical, cosmeceutical and aquaculture industries. Their production rates are superior compared to those of terrestrial crops. However, microalgae biomass production on a large scale is still a challenging problem in terms of economic and ecological viability. Microalgal cultivation system should be designed to maximize production with the least cost. Energy efficient approaches of using light, dynamic mixing to maximize use of carbon dioxide (CO2) and nutrients and selection of highly productive species are the main considerations in designing an efficient photobioreactor. In general, optimized culture conditions and biological responses are the two overarching attributes to be considered for photobioreactor design strategies. Thus, fundamental aspects of microalgae growth, such as availability of suitable light, CO2 and nutrients to each growing cell, suitable environmental parameters (including temperature and pH) and efficient removal of oxygen which otherwise would negatively impact the algal growth, should be integrated into the photobioreactor design and function. Innovations should be strategized to fully exploit the wastewaters, flue-gas, waves or solar energy to drive large outdoor microalgae cultivation systems. Cultured species should be carefully selected to match the most suitable growth parameters in different reactor systems. Factors that would decrease production such as photoinhibition, self-shading and phosphate flocculation should be nullified using appropriate technical approaches such as flashing light innovation, selective light spectrum, light-CO2 synergy and mixing dynamics. Use of predictive mathematical modelling and adoption of new technologies in novel photobioreactor design will not only increase the photosynthetic and growth rates but will also enhance the quality of microalgae composition. Optimizing the use of natural resources and industrial wastes that would otherwise harm the environment should be given emphasis in strategizing the photobioreactor mass production. To date, more research and innovation are needed since scalability and economics of microalgae cultivation using photobioreactors remain the challenges to be overcome for large-scale microalgae production
    corecore