2,429 research outputs found

    Gedanken Experiments involving Black Holes

    Full text link
    Analysis of several gedanken experiments indicates that black hole complementarity cannot be ruled out on the basis of known physical principles. Experiments designed by outside observers to disprove the existence of a quantum-mechanical stretched horizon require knowledge of Planck-scale effects for their analysis. Observers who fall through the event horizon after sampling the Hawking radiation cannot discover duplicate information inside the black hole before hitting the singularity. Experiments by outside observers to detect baryon number violation will yield significant effects well outside the stretched horizon.Comment: 22 pages (including 7 figures), SU-ITP-93-1

    Quantum Gravity as a Dissipative Deterministic System

    Get PDF
    It is argued that the so-called holographic principle will obstruct attempts to produce physically realistic models for the unification of general relativity with quantum mechanics, unless determinism in the latter is restored. The notion of time in GR is so different from the usual one in elementary particle physics that we believe that certain versions of hidden variable theories can -- and must -- be revived. A completely natural procedure is proposed, in which the dissipation of information plays an essential role. Unlike earlier attempts, it allows us to use strictly continuous and differentiable classical field theories as a starting point (although discrete variables, leading to fermionic degrees of freedom, are also welcome), and we show how an effective Hilbert space of quantum states naturally emerges when one attempts to describe the solutions statistically. Our theory removes some of the mysteries of the holographic principle; apparently non-local features are to be expected when the quantum degrees of freedom of the world are projected onto a lower-dimensional black hole horizon. Various examples and models illustrate the points we wish to make, notably a model showing that massless, non interacting neutrinos are deterministic.Comment: 20 pages plain TeX, 2 figures PostScript. Added some further explanations, and the definitions of `beable' and `changeable'. A minor error correcte

    Black Hole Evaporation without Information Loss

    Full text link
    An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkowski space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into "hard" particles and "soft" particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the SS-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.Comment: 35 pages (including Figures); TEX, 3 figures in postscrip

    Identification of indirect new physics effects at e^+e^- colliders: the large extra dimensions case

    Full text link
    We discuss indirect manifestations of graviton exchange, predicted by large extra dimensions, in fermion-pair production at a high-energy e^+e^- collider. By means of specifically defined asymmetries among integrated angular distributions, the graviton exchange signal can be cleanly distinguished from the effects of either vector-vector contact interactions or heavy scalar exchanges. The role of initial electron and positron beams polarization is also discussed. The method is applied to a quantitative assessment of the sensitivity to the mass cut-off parameter M_H of the KK graviton tower in the ADD scenario, and of the potential identification reach of this mechanism obtainable at the currently planned Linear Collider.Comment: 21 pages, 11 figure

    Inverse tri-bimaximal type-III seesaw and lepton flavor violation

    Full text link
    We present a type-III version of inverse seesaw or, equivalently an inverse version of type-III seesaw. Naturally small neutrino masses arise at low-scale from the exchange of neutral fermions transforming as hyperchargeless SU(2) triplets. In order to implement tri-bimaximal lepton mixing we supplement the minimal SU(3)xSU(2)xU(1) gauge symmetry with an A4-based flavor symmetry. Our scenario induces lepton flavour violating (LFV) three body decays that can proceed at the tree level, while radiative li to lj gamma decays and mu-e conversion in nuclei are also expected to be sizeable. LFV decays are related by the underlying flavor symmetry and the new fermions are also expected to be accessible for study at the Large Hadron Collider (LHC)

    Black Hole Entropy: a spacetime foam approach

    Get PDF
    The spacetime foam structure is reviewed briefly (topogical fluctuations and virtual black hole possibility; equation of state of the foam). A model of space foam at the surface of the event horizon is introduced. The model is applied to the calculus of the number of states of a black hole, of its entropy and of other thermodynamical properties. A formula for the number of microholes on the surface of the event horizon is derived. Thermodynamical properties of the event horizon are extended to thermodynamical properties of the space. On the basis of the previous results, the possibility of micro black holes creation by the Unruh Effect is investigated.Comment: 23 pages, no figures, postscript file gzipped,to be published in Classical and Quantum Gravity, July 199

    Quantum Mechanics of a Point Particle in 2+1 Dimensional Gravity

    Get PDF
    We study the phase space structure and the quantization of a pointlike particle in 2+1 dimensional gravity. By adding boundary terms to the first order Einstein Hilbert action, and removing all redundant gauge degrees of freedom, we arrive at a reduced action for a gravitating particle in 2+1 dimensions, which is invariant under Lorentz transformations and a group of generalized translations. The momentum space of the particle turns out to be the group manifold SL(2). Its position coordinates have non-vanishing Poisson brackets, resulting in a non-commutative quantum spacetime. We use the representation theory of SL(2) to investigate its structure. We find a discretization of time, and some semi-discrete structure of space. An uncertainty relation forbids a fully localized particle. The quantum dynamics is described by a discretized Klein Gordon equation.Comment: 58 pages, 3 eps figures, presentation of the classical theory improve

    Black Hole Horizons and Complementarity

    Get PDF
    We investigate the effect of gravitational back-reaction on the black hole evaporation process. The standard derivation of Hawking radiation is re-examined and extended by including gravitational interactions between the infalling matter and the outgoing radiation. We find that these interactions lead to substantial effects. In particular, as seen by an outside observer, they lead to a fast growing uncertainty in the position of the infalling matter as it approaches the horizon. We argue that this result supports the idea of black hole complementarity, which states that, in the description of the black hole system appropriate to outside observers, the region behind the horizon does not establish itself as a classical region of space-time. We also give a new formulation of this complementarity principle, which does not make any specific reference to the location of the black hole horizon.Comment: Some minor modifications in text and the title chang

    Hawking Radiation from Feynman Diagrams

    Get PDF
    The aim of this letter is to clarify the relationships between Hawking radiation and the scattering of light by matter falling into a black hole. To this end we analyze the S-matrix elements of a model composed of a massive infalling particle (described by a quantized field) and the radiation field. These fields are coupled by current-current interactions and propagate in the Schwarzschild geometry. As long as the photons energy is much smaller than the mass of the infalling particle, one recovers Hawking radiation since our S-matrix elements identically reproduce the Bogoliubov coefficients obtained by treating the trajectory of the infalling particle classically. But after a brief period, the energy of the `partners' of Hawking photons reaches this mass and the production of thermal photons through these interactions stops. The implications of this result are discussed.Comment: 12 pages, revtex, no figure
    • …
    corecore