268 research outputs found

    Random bits, true and unbiased, from atmospheric turbulence

    Full text link
    Random numbers represent a fundamental ingredient for numerical simulation, games, informa- tion science and secure communication. Algorithmic and deterministic generators are affected by insufficient information entropy. On the other hand, suitable physical processes manifest intrinsic unpredictability that may be exploited for generating genuine random numbers with an entropy reaching the ideal limit. In this work, we present a method to extract genuine random bits by using the atmospheric turbulence: by sending a laser beam along a 143Km free-space link, we took advantage of the chaotic behavior of air refractive index in the optical propagation. Random numbers are then obtained by converting in digital units the aberrations and distortions of the received laser wave-front. The generated numbers, obtained without any post-processing, pass the most selective randomness tests. The core of our extracting algorithm can be easily generalized for other physical processes

    Quantum Randomness Certified by the Uncertainty Principle

    Full text link
    We present an efficient method to extract the amount of true randomness that can be obtained by a Quantum Random Number Generator (QRNG). By repeating the measurements of a quantum system and by swapping between two mutually unbiased bases, a lower bound of the achievable true randomness can be evaluated. The bound is obtained thanks to the uncertainty principle of complementary measurements applied to min- and max- entropies. We tested our method with two different QRNGs, using a train of qubits or ququart, demonstrating the scalability toward practical applications.Comment: 10 page

    Source-device-independent heterodyne-based quantum random number generator at 17 Gbps

    Get PDF
    For many applications, quantum random number generation should be fast and independent from assumptions on the apparatus. Here, the authors devise and implement an approach which assumes a trusted detector but not a trusted source, and allows random bit generations at ~17 Gbps using off-the-shelf components

    A general theorem on the divergence of vortex beams

    Full text link
    The propagation and divergence properties of beams carrying orbital angular momentum (OAM) play a crucial role in many applications. Here we present a general study on the divergence of optical beams with OAM. We show that the mean absolute value of the OAM imposes a lower bound on the value of the beam divergence. We discuss our results for two different definitions of the divergence, the so called rms or encircled-energy. The bound on the rms divergence can be expressed as a generalized uncertainty principle, with applications in long-range communication, microscopy and 2D quantum systems.Comment: RevTex, published versio

    Bi-photon propagation control with optimized wavefront by means of Adaptive Optics

    Full text link
    We present an efficient method to control the spatial modes of entangled photons produced through SPDC process. Bi-photon beam propagation is controlled by a deformable mirror, that shapes a 404nm CW diode laser pump interacting with a nonlinear BBO type-I crystal. Thanks to adaptive optical system, the propagation of 808nm SPDC light produced is optimized over a distance of 2m. The whole system optimization is carried out by a feedback between deformable mirror action and entangled photon coincidence counts. We also demonstrated the improvement of the two-photon coupling into single mode fibers

    The flare origin of Forbush decreases not associated with solar flares on the visible hemisphere of the Sun

    Get PDF
    Investigations have shown that Forbush decreases (Fds) are produced by the propagation into the interplanetary space of a strong perturbation originating from a solar flare (Sf) accompanied by Type IV radioemission. As the front of the perturbation propagates into the interplanetary space, the region in which the galactic cosmic rays are modulated (Fd-modulated region) rotates westward with the Sun and is generally included between two boundary streams; therefore the Fds not associated with observed type IV Sfs (N.Ass.Fds) are likely to be produced by type IV Sfs occurred on the Sun's backside: these vents can be observed when the Earth crosses the corotating Western boundary of the modulated region

    Longitudinal dependence of the interplanetary perturbation produced by energetic type 4 solar flares and of the associated cosmic ray modulation

    Get PDF
    One of the most significant features of the flare-associated Forbush decreases (Fds) in the galatctic cosmic ray (c.r.) is the so-called East-West asymmetry: the solar flares (Sfs) observed in the Eastern or central region of the solar disk exhibit a higher probability to cause large Fds than the Sfs occurring in the Western portion of the disk. In particular the interplanetary perturbations generated by Type IV Sfs depress the c.r. intensity in a vast spiral cone-like region (modulated region) which extends along the interplanetary magnetic field from the neighborhood of the active region to the advancing perturbation, and that, immediately after the flare-generated perturbation, the maximum c.r. modulation is observed between 0 and 40 deg. W of the meridian plane crossings the flare site at time of flare (flare's meridian plane)

    Suggestions for improving the efficiency of ground-based neutron monitors for detecting solar neutrons

    Get PDF
    On the occasion of the June 3, 1982 intense gamma-ray solar flare a significant increase in counting rate due to solar neutrons was observed by the neutron monitors of Junsfraujoch and Lomnicky Stit located at middle latitudes and high altitudes. In spite of a larger detector employed and of the smaller solar zenith angle, the amplitude of the same event observed at Rome was much smaller and the statistical fluctuations of the salactic cosmic ray background higher than the ones registered at the two mountain stations, because of the greater atmospheric depth at which the Rome monitor is located. The effeciency for detecting a solar neutron event by a NM-64 monitor as a function of the Sun zenith angle, atmospheric depth and threshold rigidity of the station was studied

    Anomalous short-term increases in the galactic cosmic ray intensity: Are they related to the interplanetary magnetic cloud-like structures?

    Get PDF
    Thirty-one short-term increases (time duration 24 hours and amplitude up to 5%) in the galactic cosmic ray intensity, occurring inside Forbush decreases events, have been identified over the period 1966 - 1977. These increases are highly anisotropic and occur after the compression region following the shock; the interplanetary medium is characterized by intense ( 10 nT) and higly fluctuating magnetic field B, high velocity, low density and temperature (flare ejecta piston?). These B-fluctuations seem to be ordered variations which could be representative of magnetic clouds. Also the large cosmic ray increase occurring on 17-18 September 1979, belongs to this category of events
    • …
    corecore