THE FLARE ORIGIN OF FORBUSH RECREASES NOT ASSOCIATEN WITH SOLAR FLARES ON THE UTSTELE HEMISFHERE OF THE SUN

N.IUCCI, M,FARISI, C.STGNOFINI, M.STORTNI and G.UHLLOREST Istituto di Fisica dello Smazio Interflanetario del CNK Mifartimento di Fisica -. Universita' "Las Safienza"
Fiazzale Aldo Moro, $2-00185$ ROMA, ITALY

1. Intronuction Frevious irvestisations (e.s. / / /) have sho. own that Forbush decreases (Fas) are froduced bs the profasa tion into the interflanetars smace of a strong perturbation orisinatims from a solar flare (Sf) accompanien gu rume IV radioemission. As the front of the wertorbation frowasates i... nto the intermiametars smace, the resion in which the salact... ic cosmic rass are mosulated (Famodnlated resion' rotates westward with the Sun and is semeralls imeluded between two bouncars streams /2/; therefore the Fos rot associated with observed Tsfe JU Sfs (N, Ass.Fos) are likely to be froduced bs Type IU Sfs ocourred on the Gun's backside: these events can be observed when the Earth crosses the corotatins Western bo... uridisw of the modulates resion. The mann furfose of this Fa... Fer is to sumfort our emfirical Fa-model bu studuirs the orisin of $N+A s s+F \operatorname{ds}$ and the corotistion of the boundars streams.
2. Mata amalssis. It is vers likely that the strons active resions (SAR) froduciris sreat flarewassociated Fos durins the. eir massase on the visible hemiswhere of the Sun can flare um further TuFe TU Sfs when thes are located on the Gum's back...
 a modulated resion prodwed bu the flares from one of these active zomes encounters the Earth. We think that this is the case for the majorits of $N+A s s+F d s$. In order to test this st... atement we wlotted in fismbe 1 the distribution of the onset... times of all (~ 140) $N+A s s+F b s$ (amplitude $\% 1.5 \%$ in the folar mucleonic intemsits over the feriod 1957-1979/1, 3,4/) with respect to the cerstal meridian massase (CMF) of 120 GAF /5/ producims larse Foss (ampliture $\% 3 \%$ for TuFe TV gfs located betweer E90-wAS and 31.5% for $W 45 \cdots(W 9 / 1 /)$. We rotice that, over a ramdom distributiong larse feaks come out between -4 and +2 dass from the 27 "-was recurremces of the CMF of SAB ; i.e, these $N+A s s$ fros are foura to besim some dass before the masmetie field lime comected with the SAF erosses the Earth. The weak at to7 dess apmears to be the most fronounces as ex. Fectedy while the peak amplitude at the CMF of SAR is reduced bs the occurrence of larse Fasy froduced by TuFe TU Sfs in the Easterm auacirant, which mask the contemforars presemce of
 are related with the CMF of GAF or its +27-was recurrences on the other hand 58% of the 120 GAR analuzed are related to a $N, A s s, F \operatorname{cocurrims}$ mear the +27 - das CMF recurrence, while for 23% of them the Fostible N.Ass.Fis are masked bs the occur... rence of flarewassociated Fos.

Ir conclusion it seems that the majorits of N.Ass. Fos (\% 60%) are produced bs intense Tspe IU Sf activity from lons-livins SAR; therefore we mas expect that most of the remainiris N.Ass. Fds could be wroduced bu enersetic Type iv Sfs occurrins on the Surn's backside in active resions not included in SAR. Fisure 2 shows a Bartels displas of CMF dates of SAR (e) tos. ether with their 27-das recurrences (0) the arrows indicate the N.Ass.Fo onset times, The time interval between the $+27 \ldots$ das recurrence of CMF of SAR and the besinmins of N.Ass.Fds mas be explained bu two effects: the heliolonsitude distance between the active resion and the solar source of the western stream and the speed of the western stream itself. The Table shows that, as an averase, the more the N.Ass,Fd orset-time ($t, 1$) wrecedes the CMF or $i t, \$ 27$-das recurrence ($t, 0$), the mo... re the solar wind speed at the Fowonset is found to increase. This result mas account for about a half of the broadenins of the recurrent peakst therefore the solar source of the westerin stream seems to be located, from case to casey between $\sim 40^{\circ}$ and $\sim 75^{\circ} \mathrm{dm}$ the west of the ac... tive resion which is, as expe.. cted, the half lonsitucimal e--

t_{1}... t_{0}	\checkmark	Numbe
(dass)	($\mathrm{K} . \mathrm{m} / \mathrm{m}$)	Even
$\cdots-4 \div 2$	570	13
$-2 \div 0$	465	17
$0 \div+2$	380	10

The corotation with the Sun of the Fomodulated resion is better shown if the boundars streams are found to recur. The inct... erplanetars data/6/ are used to investisate the recurrence of these perturbations. Feriods of eninanced masnetic field inten sits (B (10nT), not associable either with interaction resions between hish seeed streams ejected from coronal holes and the ambient solar wind, or with intermanetary ferturbations produced bu enersetic Tupe IV Sf in in the visible hemisphere of the Suny have been identified. The averase behaviour of the i riterplanetars masnetic field intensits B and froton density N For 160 of those perturbations are shown in fisure 3 tosether with the averase behaviour of B and N about ± 27 days (b) and ± 54 dass (e). The das of the shary increase in \mathbf{a} was chosen as eroch time. The results show that there is a hish frobabil... its that these interglenetars structures corotate with the sun, beins the lifetime 22 solar rotations.
3. Conclusioms. The rarent active resions of most N. Ass.Fos are found to be the ones showins an intense Tspe IV Sf activitu durime their wassase on the visible hemisphere of the Sury ran mely those which are most likels able to wroduce TuFe IV Sfs also on the Sum's backside. TuFe IU Sfs emitted at differerit times bu the same active resion will depress the cosmic ras imiensitu in the same portion of the interflametars sface corotatims with the Sumy therefore the Fa-effect will be observed also in the interplametary resions which were rot swept by the fromt of the werturbationy as it should hamen for the N. Ass. Fos. These results sive a further suffort to the exferimental

Eeferences

/2/N.TUCCI et a1. \ddagger Nuovo Cimento 7C, 467, 1.984.
 /4/ M. H.WILSON and M+BEFCOUTTCH: "Cosmic res NM 64 dista" AECL.... Canada 1973-1979.

 \& $577704(1.977)$, $79 \ldots 08(1979)$ and $83 \cdots 01$ (1983).

Fisure 1: Distribution of the onset times of the N.Ass.Fis with resfect to the Central Meridian Fassase (CMF) of the active rew sions producins energetic Tufe IU Sfs and associated with sreat Fos (see the Tent,).

Fisure 2: Bartels disflay of CMF dat-es of SAR (e) tosether with their 27das recurrences (0); the arrows indicate the N.Ass.Fr onset-times.

Fisure 3: (a)- Superfosed epoch analysis of the iriterflarietary masnetic field masritude ard protion derisity for 160 interelarietary perturbations duririg 10 days ceriteres about the time t_{0} of the sharf increase in E which is chosen as epoch timet (b)- the same as ir (a) using as efoch time: tot 27 dass; (c)- the same as in (a) usins as eroch time: to $\ddagger 54$ days.

