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Source-device-independent heterodyne-based
quantum random number generator at 17 Gbps
Marco Avesani 1, Davide G. Marangon1, Giuseppe Vallone 1,2 & Paolo Villoresi 1,2

Random numbers are commonly used in many different fields, ranging from simulations in

fundamental science to security applications. In some critical cases, as Bell’s tests and

cryptography, the random numbers are required to be both private and to be provided at an

ultra-fast rate. However, practical generators are usually considered trusted, but their

security can be compromised in case of imperfections or malicious external actions. In this

work we introduce an efficient protocol which guarantees security and speed in the gen-

eration. We propose a source-device-independent protocol based on generic Positive

Operator Valued Measurements and then we specialize the result to heterodyne measure-

ments. Furthermore, we experimentally implemented the protocol, reaching a secure gen-

eration rate of 17.42 Gbit/s, without the need of an initial source of randomness. The security

of the protocol has been proven for general attacks in the finite key scenario.
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The possibility of generating random numbers by quantum
processes is an invaluable resource in cryptography.
Nowadays, common solutions based on pseudo or classical

random number generators rely on deterministic processes,
which are in principle predictable. On the contrary, quantum
mechanics guarantees, from a theoretic point of view, that the
outcome of the measurement is completely unpredictable. How-
ever, in a paranoid scenario (the usual framework of device-
independent protocols), any imperfection in the physical reali-
zation of a quantum random number generator (QRNG) may
leak information correlated with the generated numbers, the so-
called side information1. Such classical or quantum correlations
could be exploited by an eavesdropper to correctly guess the
measurement outcomes.

The maximal amount of randomness that can be extracted in
presence of such side information is given by the so-called
quantum conditional min-entropy2. Several approaches have
been proposed to lower bound it, depending on the number of
assumptions required on the devices used in the generator. For
“fully trusted” QRNGs3–5, the min-entropy can be evaluated
because pure input states and well characterized measurement
devices are assumed (see ref. 6 for more details). In contrast,
device-independent (DI) protocols, by exploiting entanglement,
do not need any assumption: the violation of a Bell inequality
directly bounds the min-entropy, without the need of trusting the
generated state and the used measurement devices. Fully trusted
QRNG, including all the commercial ones, are easy to realize, but
they require strong assumptions for their use in cryptography. On
the contrary, DI protocols offer the highest level of security, but
their realization is still too demanding for any practical use7–11.

Semi-device-independent (Semi-DI) protocols12, are a promis-
ing approach to enhance the security with respect to standard
“fully trusted” QRNG, achieving fast generation rate, dramatically
larger than DI QRNG. These require some weaker assumptions to
bound the side information. Such assumptions can be related to
the dimension of the underlying Hilbert space13,14, the measure-
ment device6,11,15–17 or the source18, for example the mean
photon number19 or the maximum overlap20 of the emitted states.

In this work, we introduce a QRNG belonging to the family of
the Semi-DI generators. In particular, we will describe a novel
source-device-independent (Source-DI) protocol by exploiting
continuous variable (CV) observables of the electromagnetic
(EM) field. In previously realized CV-QRNGs15,21, random
numbers were generated by using a homodyne detector that
measures a quadrature of the EM field. We propose and
demonstrate a CV-QRNG based on heterodyne detection in the
Source-DI framework: we will show how it is possible to obtain a
lower bound on the eavesdropper quantum side information (i.e.,
the conditional min-entropy) and to achieve, to our knowledge,
the fastest generation rate in the Semi-DI framework. The
advantages of heterodyne measurement over homodyne are
multiple: beside offering better tomography accuracy than
homodyne22,23, heterodyne measurement offers an increased
generation rate since it allows a “simultaneous measurement” of
both quadratures. In addition, the experimental setup is simpli-
fied with respect to the protocol based on homodyne introduced
in15, as there is no need of an active switch to measure the two
quadratures. Finally, it is possible to derive a constant lower
bound on the conditional quantum min-entropy that does not
change during the experiment. Our Source-DI protocol assumes a
trusted detector but it does not make any assumption on the
source: an eavesdropper may fully control it, manipulating it in
order to maximize her ability to predict the outcomes of the
generator. Such approach is very effective in taking into account
any imperfect state preparation. Although these are the typical
assumptions that hold for QRNGs in the Semi-DI framework,

this protocol features an important difference. Previous protocols
counteract the eavesdropper via an active measurement strategy
on the state, which implies the need for additional randomness to
certify the numbers. Instead here the removal of the active basis
switch has a deep impact on the type of protocol implemented: in
this scheme no external initial randomness is required, making it
a randomness generation protocol and not a randomness
expansion protocol, unlike previous Semi-DI and DI realizations.
Moreover, we will show the results of a practical realization of the
protocol with a compact fiber optical setup that employs only
standard telecom components. The electric signals coming from
the detectors are digitalized in burst mode by an oscilloscope and
further post-processed, achieving an equivalent generation rate of
secure random numbers > 17 Gbit/s.

Results
A heterodyne QRNG. In standard CV-QRNGs, random numbers
are obtained by measuring with an homodyne detector a quad-
rature observable of the EM fields, typically prepared in a vacuum
state. CV-QRNGs are characterized by high generation rates
owing to the use of fast photodiodes instead of (slow) single-
photon detectors: continuous spectrum of the observables typi-
cally assures more than one bit of entropy per measurement and
the use of photodiodes with high-bandwidth allow to sample the
quadratures at GSample/s. In our QRNG, we implement a het-
erodyne detection scheme where two “noisy quadrature obser-
vables” are measured simultaneously24,25. More precisely, an
heterodyne measurement corresponds to the following positive
operator value measurement (POVM) Π̂α

� �
α2C where

Π̂α ¼
1
π
αj i αh j; ð1Þ

and |α〉 is the coherent state with complex amplitude α. If we
define ρA as the density matrix of the EM field, the output of the
heterodyne measurement is represented by the random variable X

X ¼ q; pf g; q ¼ <e αð Þ; p ¼ =m αð Þ; ð2Þ

distributed according to the following probability density func-
tion known as Husimi function:

QρA
ðαÞ ¼ Tr Π̂αρA

� � ¼ 1
π

αh jρA αj i: ð3Þ

In an ideal scenario where the QRNG user (Alice) can trust the
source of random states, such scheme has the immediate
advantage of doubling the generation rate with respect to an
homodyne receiver. As the “raw” random numbers X are typically
not uniformly distributed, it is essential to process them with a
randomness extractor26. A randomness extractor compresses the
input string of raw numbers, such that the shorter output string is
composed by i.i.d. random bits.

In a real implementation, any heterodyne measurement is
discretized. This means that the possible outcomes Xδ of the
measure are discrete with a resolution given by δq and δp for the
two “quadratures”. The discretized version of the POVM element

Π̂α is then given by Π̂
δ
m;n ¼

R ðmþ1Þδq
mδq

dq
R ðnþ1Þδp
nδp

dpΠ̂qþip and the

possible outputs are distributed according to a discretized version
of the Husimi function:

Qδ
ρA
ðm; nÞ ¼ Tr Π̂

δ
m;nρA

h i
¼

Z ðmþ1Þδq

mδq

dq
Z ðnþ1Þδp

nδp

dpQρA
ðqþ ipÞ :

ð4Þ
In a fully trusted QRNG, when the source is trusted and the

input state is pure (such as for the vacuum) or the privacy of the
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generated numbers is not a concern, the number of random bits
that can be extracted per sample is given by the so-called classical
min-entropy of Xδ

Hmin Xδð Þ ¼ �log2 max
m;n

Qδ
ρA

m; nð Þ
� �

: ð5Þ

However, ultrafast generation is worthless for cryptographic
applications if the numbers are not secure and private. If security
is important, quantum side information must be also taken into
account and the conditional quantum min-entropy
HminðXjEÞ2,27–29 must be evaluated. We recall that in the
Source-DI framework, an eavesdropper may have full control of
the source and then may have some prior information on the
generated numbers. We will show that with a heterodyne scheme
it is possible to generate unpredictable and secure numbers also
when the source of quantum states is controlled by the
eavesdropper.

A secure POVM-based QRNG. In our Source-DI framework,
Alice does not make any assumption on ρA, such as its dimension
or purity: the source may be even controlled by a malicious
QRNG manufacturer, Eve. This framework is well suited to deal
with imperfect sources of quantum states6. On the contrary, Alice
carefully characterizes her local measurement apparatus and
trusts it.

In this scenario, Eve is assumed to prepare the state ρA to be
measured. In particular, Eve will prepare ρA in order to maximize
her guessing probability Pguess of the outcomes of Alice
heterodyne measurement. If the state ρA is not pure, it can be
prepared by Eve as a incoherent superposition of states τAβ with

probabilities p(β), such as ρA ¼ R
pðβÞτAβ dβ. As shown below, for

quantum state ρA with positive Glauber–Sudarshan representa-
tion, Eve optimizes her strategy by using τAβ that are coherent
states.

When Eve generates the state τAβ , the best option for her is to
bet on the heterodyne outcome with higher probability, namely

maxm;n Tr Π̂
δ
m;nτ

A
β

h i
. On average, Eve’s probability of guessing

correctly the output of the heterodyne measurement can be

written as Pguess XδjEð Þ= R
pðβÞmaxm;nTr Π̂

δ
m;nτ

A
β

h i
dβ. Having full

control of the source, given the state ρA, Eve chooses the

decomposition pðβÞ; τAβ
n o

that maximizes Pguess. We note that

the states τ̂k are, in general, not orthogonal. In such scenario,
quantum correlations between Alice and Eve are modeled by a
shared a pure bipartite state ρAE. The states τk are related to the
optimal measurement that Eve should perform on ρAE in order to
maximize her guessing probability.

According to the Leftover Hash Lemma27,30, the extractable
randomness in the presence of side information is quantified by
the quantum conditional min-entropy

Hmin XδjEð Þ ¼ �log2Pguess XδjEð Þ; ð6Þ

where Pguess XδjEð Þ is maximum probability of guessing Xδ

conditioned on the quantum side information E

Pguess XδjEð Þ ¼ max
pðβÞ; τAβ

n o
Z

pðβÞmax
m;n

Tr Π̂
δ
m;nτ

A
β

h i
dβ: ð7Þ

The maximization in (7) is performed over all possible
decomposition fpðβÞ; τAβ g that satisfy ρA ¼ R

pðβÞτAβ dβ. The
above considerations are valid not only for the heterodyne
measurement, but are correct for any POVM measurement (also
with Hilbert spaces of finite dimensions).

Figure 1 represents a general protocol within this framework.
In the case of infinite precision δp, δq → 0 (i.e., the continuum
limit) it is possible to define the differential quantum min-
entropy as hmin XjEð Þ= limδp;δq!0½Hmin XδjEð Þ þ log2δpδq�29 and

a corresponding pguessðXjEÞ= 2�hminðXjEÞ. In this case pguess is a
probability density and not a proper probability such as Pguess.

By exploiting the properties of POVMs, we derive a lower
bound on HminðXδjEÞ (and thus an upper bound on PguessðXδjEÞ).

Proposition 1. For any POVM, Π̂x

� �
x2X the quantum conditional

min-entropy HminðXjEÞ is lower-bounded by Hlow=
�max x2X;τA2HAf glog2 Tr Π̂xτA

� �� 	
.

If the POVM reduce to projective measurements, the above
bound is trivial, as it is always possible to find a state τA such that
Tr Π̂xτA
� � ¼ 1: in this case, no randomness can be extracted.

However, for an overcomplete set of POVM we may have
maxfx;τAgTr Π̂xτA

� �
<1 and therefore randomness can always be

extracted. We now exploit the above proposition for the specific
case of heterodyne measurement.

Corollary 1. For the heterodyne measurement, the quantum
conditional min-entropy is lower-bounded by

Hmin XδjEð Þ � � max
fm;n;τAg

log2 Tr Π̂
δ
m;nτA

h i
 �
¼ log2

π

δqδp
: ð8Þ

The corresponding differential min-entropy hmin XjEð Þ is
lower-bounded by log2 π. The bounds are tight, i.e., hminðXjEÞ ¼
log2π and Hmin XδjEð Þ= log2

π
δqδp

þ OðδÞ, for quantum state with

positive Glauber–Sudarshan PðαÞ representation.

Extractor
x = 1
x = 2

x = n

�AE

�A

�E
Quantum

side information Hmin (X |�)

X = 010 ⋅⋅⋅
Raw

numbers

⋅⋅⋅

Alice

Secure
numbers{∏x

A }
∧

POVM

Eve

Fig. 1 Structure of the Source-DI protocol. In the general Source-DI scenario, Eve prepares the state ρA that she sends to Alice such that her purification
gives her the maximal guessing probability on Alice’s outcome. The structure of the POVM chosen by Alice to measure ρA already impose a lower bound
on HminðXjEÞ, independently from the input state or the output of her measurement (see Proposition 1). This bound is used to calibrate an extractor that
returns, at each round of the protocol, secure random bits when applied to Alice’s outcome
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The proofs of Proposition 1 and Corollary 1 are given in the
Methods section. By using an heterodyne measurement scheme, a
quantum tomography of the input state is also obtained31:
although Alice generates the raw random numbers, she also
reconstructs the state ρA. Then it is possible to evaluate
numerically the quantum conditional min-entropy by using (6)
and (7). Although for a qubit system, this problem was elegantly
addressed by32, it is not of easy solution in the CV case. On the
other hand, Corollary 1 gives an easy lower bound on Hmin XδjEð Þ.
Alice knows that even if Eve forges a state with an optimal E, such
side information will not let Eve guess the heterodyne outcome

with a probability larger than
δqδp
π . In the presence on an imperfect

source of quantum states, this is the most conservative strategy to
adopt, but ensures the generation of completely secure random
numbers while avoiding a complex numerical maximization
(a discussion about the robustness of the protocol against general
attacks can be found in the Methods section). It is worth to note
that the min-entropy of the random numbers is bounded by a
function that depends on the measurement resolution only. The
measurement, in this scenario, is under control of the user: Alice
can readily obtain the min-entropy (8) by measuring δp and δq of
her well characterized apparatus. The min-entropy is constant
and Alice does not need to worry updating its value, as long as
she trusts the apparatus. In the case of imperfect heterodyne
measurement Proposition 1 can be still used: the characterization
of the measurement apparatus allows to define what are the actual

POVM ~Π
δ
m;n corresponding to such measurement. In Eq. (8) the

ideal POVM Π̂
δ
m;n should replaced by the operators ~Π

δ
m;n. The

bound log2
π

δqδp
should be modified accordingly and its explicit

value depends on the actual form of the operators ~Π
δ
m;n.

It is worth noticing that in many cases such lower bound is
(almost) tight: indeed, coherent and thermal states have positive
Glauber–Sudarshan PðαÞ function and for those states the bound
log2 π on the differential min-entropy is tight (the bound of the
min-entropy is almost tight due to discretization). Moreover, in
contrast to other Semi-DI QRNG where the min-entropy needs to
be estimated in real time to provide security13,15,20, in our
protocol it depends on the structure of the heterodyne POVM
and it is always constant. Hence, Alice can apply on Xδ a
randomness extractor calibrated on log2

π
δqδp

and erase any
guessing advantage of Eve.

Experimental implementation. The proposed new protocol has
been implemented with an all-fiber setup at telecom wavelength
with the scheme in Fig. 2; in this way is possible to exploit the
availability of fast off-the-shelf components for classical tele-
communication while keeping the setup compact. The heart of the

experiment lies in the heterodyne detection of the vacuum state,
that samples the Q-function with the help of a coherent field |α〉 of
a Local Oscillator (LO). As we work in the Source-DI scenario,
from the point of view of security, the quantum state measured
can be fully controlled by Eve, because we do not assume anything
about the source. After the heterodyne detection, a 10-bit analog-
to-digital converter (ADC) digitizes two analog signals, each one
proportional to one of the quadrature (q, p).

These signals directly sample the Q-function in the phase
space, as shown in Fig. 3. The resolution of the ADC can be
directly converted to the equivalent resolution in the phase space,
thanks to the calibration function (for more info see Supplemen-
tary Note 1); in our case we obtained δq= (14.05 ± 0.02) · 10−3

and δp= (14.14 ± 0.02) · 10−3, respectively.
The raw data are then digitally filtered, taking only a 1.25 GHz

window in the central part of the spectrum obtained by the
detectors. In such way the classical noise that is coupled with the
detector is filtered. Finally, the data are downsampled at 1.25
GSample/s, matching the bandwidth of the signal and removing
any correlation introduced by the oversampling.

We acquired 6 · 1010 measurements obtaining σ2q = 0.55135 ±
0.00001 and σ2p = 0.56732 ± 0.00001. As it can be seen from Fig. 3,
the measured Q-function is slightly larger than the one expected
for a pure vacuum state, where both variances are expected to be
equal to 1/2. The increase of the variances is due to classical noise
of the detectors: in our approach such noise is regarded as a

Fig. 2 Schematic representation of the experimental setup. The setup consists of a 1550 nm laser used as a LO, measured in real time. The heterodyne
detection is performed by a 90° optical hybrid and a pair of balanced InGaS detectors. The VOA is used during the calibration phase. Only commercial off-
the-shelf devices were used
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Fig. 3 Experimental state tomography. The plot shows the Husimi function
for the vacuum (meshed curve) and the measured state (colored
histogram). The projections refer to the experimental data. The measured
variance is slightly larger than the one expected for the vacuum due to the
electronic noise that widens the distribution
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“spreading” of the Q-function. Then, the effect of the electronic
noise in reducing the generation rate is already included in our
analysis for the quantum min-entropy. For more details see the
Supplementary Notes 1 and 2.

The classical min-entropy Hmin(Xδ) corresponds to the larger
probability of output and it is given by

Hmin Xδð Þ ¼ 14:100: ð9Þ

However, the quantum min-entropy can be lower-bounded by
Eq. (8). With the quadrature resolutions used for the experiment,
we obtain

HminðXδjEÞ � 13:949; ð10Þ

for an equivalent secure generation rate of 17.42 Gbit/s. It is
worth noticing that the high gain in security guaranteed by
the conditional quantum min-entropy of Eq. (10) with respect to
the classical min-entropy Eq. (9) implies a very small reduction of
the generation rate (from 14.10 to 13.949 bits per sample). As
said, such small reduction is experimentally owing to the
electronic noise that slightly increases the quadrature variances
with respect to the ideal value of 1/2. We also note that the
generation rate can be improved by using an ADC with resolution
larger than 10 bits.

In addition, these rates are not calculated in the asymptotic
regime, i.e., in the limit of infinite repetitions of the protocol, but
are valid for single-shot measurements. In fact, the conditional
min-entropy Hmin XδjEð Þ is not estimated from the data, but it is
bounded considering the structure of the POVM and the optimal
strategy for the attacker, making it independent from the number
of rounds of the protocol. Finally, a Toeplitz randomness
extractor33 is calibrated using Hmin XδjEð Þ, and extracts the
certified numbers from the raw data. As a final check, we applied
a series of statistical tests from the DieHarder and NIST suite: all
of them are successfully passed (see Supplementary Note 4).

Discussion
In this work, we demonstrated the versatility of heterodyne
detection scheme for the generation of secure random numbers in
a CV Source-DI framework, where no assumption on the source
of quantum state is required. In fact, exploiting the properties of
the POVM implemented by the heterodyne measurement, in
Corollary 1 we obtained a direct lower bound to the conditional
min-entropy, and hence on its security. This bound, also valid in
the non-asymptotic regime, enables the user to erase all the side
information related with an imperfect or malicious source of
quantum states. Compared with previous Source-DI
QRNGs6,12,15 this security is obtained without affecting the
generation rate: in the previous protocols, part of the generated
numbers were consumed to estimate and update the bound to
the conditional min-entropy. In the protocol introduced here,
the bound is constant, as it is determined by the resolution of the
trusted measurement apparatus only. Hence, all the secure
numbers are available to the user. Such simplification has many
advantages for any practical implementation of the protocol. In
particular, our protocol does not rely on external randomness to
work, making it a standalone random number generator, whereas
previous Semi-DI QRNG are based on randomness expansion
protocols, that require either an initial seed or an external source
of randomness to work.

Our approach allows to merge the speed of heterodyne mea-
surements and the security of semi-DI protocols. Indeed, we
realized the protocol with off-the-shelf components achieving,
with an off-line post-processing, an equivalent rate of 17.42 Gbit/s,

Methods
Lower bound on the quantum conditional min-entropy. In this section, we give a
proof of the proposition and the corollary that enable us to lower bound the
quantum conditional min-entropy Hmin XjEð Þ.

Proposition 1. For any POVM, Π̂x

� �
the quantum conditional min-entropy

HminðXjEÞ is lower-bounded by Hlow =�maxfx;τA2HAglog2 Tr Π̂xτA
� �� 	

.

Proof. Given a set of POVM Π̂x

� �
, the maximum over x in (7) is bounded by

maxxTr Π̂xτ
A
β

h i
≤maxx;τATr Π̂xτA

� �
. Then Eq. (7) is upper bounded by:

Pguess XjEð Þmin � max
fx;τAg

Tr Π̂xτA
� �

max
fpðβÞ;τBg

R
pðβÞdβ

¼ max
fx;τA2HAg

Tr Π̂xτA
� � ð11Þ

from which the bound on the min-entropy follows by using (6).
It is possible to specialize this result in the case of heterodyne detection,

showing that the bound is always non-trivial:

Corollary 1. For the heterodyne measurement, the quantum conditional min-
entropy HminðXδ jEÞ is lower-bounded by log2

π
δqδp

. The corresponding differential

min-entropy hminðXjEÞ is lower-bounded by log2 π. The bounds are tight, i.e.,
hmin XjEð Þ ¼ log2π and Hmin Xδ jEð Þ= log2

π
δqδp

þ OðδÞ, for quantum state with

positive Glauber–Sudarshan PðαÞ representation.
Proof. It is well known that the Husimi function QρA

ðqþ ipÞ is upper bounded
by 1

π. Then, ∀τA, the following inequality holds:

Tr Π̂
δ
m;nτA

h i
¼ R ðmþ1Þδq

mδq
dq
R ðnþ1Þδp
nδp

dpQρA
qþ ipð Þ

� R ðmþ1Þδq
mδq

dq
R ðnþ1Þδp
nδp

dp 1
π

� δqδp
π

ð12Þ

By Proposition 1, it follows thatHminðXδ jEÞ ≥ log2
π

δqδp
. By the definition of differential

quantum min-entropy as hminðXjEÞ= limδp ;δq!0 Hmin Xδ jEð Þ þ log2δpδq
h i

it follows

that hminðXjEÞ � log2π. To show the tightness, we note that any matrix ρA can be
written as ρA ¼ R PðαÞ αj i αh jd2α where PðαÞ is the Glauber–Sudarshan P-function.
If PðαÞ is positive it can be interpreted as a probability density and the state ρA can be
seen as an incoherent superposition of coherent states. For small δp and δq the
guessing probability of Eq. (7) becomes

Pguess Xδ jEð Þ ¼ δqδp max
fpðβÞ; τAβ g

Z
pðβÞmax

α
QτA

β
ðαÞ þ O δ3

� 	
: ð13Þ

As coherent states maximize the value of the Husimi function QτA
β
ðαÞ, then the

optimal decomposition in (13) is precisely PðαÞ; αj i αh jf g such that PguessðXδ jEÞ=
δqδp
π þ Oðδ3Þ and Hmin Xδ jEð Þ= log2

π
δqδp

þ OðδÞ. The differential quantum

conditional min-entropy is then exactly hminðXjEÞ ¼ log2 π.

Security against coherent attacks. In the previous subsection we evaluated the
quantum conditional min-entropy Hð1Þ

minðXjEÞ for a single run of the protocol.
Usually this corresponds to consider security against only individual attacks.
However, as we calculate the min-entropy on the worst state τ(1) that is allowed by
physics, this result holds also for coherent attacks. In this section, we will show it
explicitly, by bounding the min-entropy for n runs of the protocol HðnÞ

minðXjEÞ in
terms of the min-entropy for a single run of the protocol Hð1Þ

minðXjEÞ. When Eve
performs a coherent attack, she can prepare a general n-partite state τ̂ðnÞ to
maximize her probability of guessing the n outcomes of Alice measurements, that
can be written as

Π̂x � Π̂x1
� Π̂x2

� � � � � Π̂xn
: ð14Þ

The guessing probability of Eve for n runs of the protocol PðnÞ
guess XjEð Þ can be
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written as

PðnÞ
guessðXjEÞ ¼ max

fxig
max
τðnÞ

Tr Π̂x1
� � � � � Π̂xn


 �
τðnÞ

h i� �
ð15Þ

¼ max
fxig

max
τ1

Tr Π̂x1
τ̂1

h i
� � �max

τn
Tr Π̂xn

τ̂n

h i� �
ð16Þ

¼
Yn
i¼1

max
xi ;τi

Tr Π̂xi
τi

h i� 
ð17Þ

¼ Pð1Þ
guessðXjEÞ

h in ð18Þ

where Pð1Þ
guessðXjEÞ is the guessing probability for one run of the protocol, derived in

the main text. In the above equations the state τ(n) is a generic n-partite state,
whereas τi are generic single-party states. The crucial step is going from Eqs. (15)
and (16). The argument of the outer maximization in Eq. (15) is given by
maxτðnÞTr Π̂xτ

ðnÞ� �
and corresponds to the maximum eigenvalue of the operator Π̂x.

As Π̂x is the product of Hermitian operators with non-negative eigenvalues, its
maximum eigenvalue is equal to the product of their maximum eigenvalues,

namely maxτ1 Tr Π̂x1
τ̂1

h i
� � �maxτnTr Π̂xn

τ̂n

h i
. This means that Eve’s optimal

strategy is to generate a n-mode separable state τ(n)= τ1 ⊗ τ2 ⊗ … ⊗ τn.
Therefore, the min-entropy for n runs of the protocol HðnÞ

minðXjEÞ can be written
as:

HðnÞ
minðXjEÞ ¼ �log2P

ðnÞ
guessðXjEÞ

¼ �log2 Pð1Þ
guessðXjEÞ


 �nh i

¼ nHð1Þ
minðXjEÞ:

ð19Þ

Hence, our bound on the min-entropy is valid not only in the single-shot regime,
but also for n repetitions of the protocol and coherent attacks.

Experimental details. We employed a narrow linewidth ECL laser at 1550 nm
(Thorlabs SFL1550) followed by and electronically controlled variable optical
attenuator and a in-line polarization controller. In this way, we were able to finely
control the intensity and the polarization of our LO, besides making the calibration
procedure automatized. Before entering the heterodyne measurement, 10% of the
LO is sent to a photodetector, for a continuous monitor of its intensity. In such
way, any anomaly to the normal functioning of the LO can be noticed in real time,
and deviations can be compensated during the post-processing. The optical het-
erodyne was realized with a commercial fiber integrated “90 degree hybrid”: one
port is coupled to the LO while from the other is entering the vacuum state. The 90
degree hybrid mixes the signal with the LO and returns two pairs of outputs,
featuring a π/2 phase shift. These optical signals, detected by a couple of high-
bandwidth balanced detectors (1.6 GHz Thorlabs-PDB480C), are proportional to
the quadratures of the signal, q and p. We sampled both signals coming from the
detectors using a fast oscilloscope with 10 bits of resolution (LeCroy HDO 9404).
The oscilloscope operated in burst mode, acquiring the analog signal at 10 GSps
until the entire memory was completely filled. Then, the data are streamed to the
computer via an Ethernet connection where it was post-processed. However, by
using high resolution ADC and high throughput FPGA for real time processing,
multi GBps real time extraction has been shown34.

Data availability
The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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