32 research outputs found
Variational determination of the second-order density matrix for the isoelectronic series of beryllium, neon and silicon
The isoelectronic series of Be, Ne and Si are investigated using a
variational determination of the second-order density matrix. A semidefinite
program was developed that exploits all rotational and spin symmetries in the
atomic system. We find that the method is capable of describing the strong
static electron correlations due to the incipient degeneracy in the hydrogenic
spectrum for increasing central charge. Apart from the ground-state energy
various other properties are extracted from the variationally determined
second-order density matrix. The ionization energy is constructed using the
extended Koopmans' theorem. The natural occupations are also studied, as well
as the correlated Hartree-Fock-like single particle energies. The exploitation
of symmetry allows to study the basis set dependence and results are presented
for correlation-consistent polarized valence double, triple and quadruple zeta
basis sets.Comment: 19 pages, 7 figures, 3 tables v2: corrected typo in Eq. (52
Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials
When considered by a biorefinery approach, an agroindustrial byproduct such as wheat bran can find a new standing in the field of fabrication of mycelium-based materials. The present work reports on a systematic study on the effect of wheat bran as an upgrading feedstock for the growth and development of fully biobased and biodegradable composites. Two families of materials based on bran/cotton and bran/hemp mixtures were fabricated on an industrial scale. The natural materials thus obtained were fully characterized and their end-life was assessed in composting conditions. The research focusses on two main aspects: the nutritional contribution of bran for the fungal growth and its effect on the mechanical properties as a filler in the final composites. It must be noted that the valorization and exploitation of a byproduct such as bran can have a considerable impact on the industrial production of mycelium-based composite materials, by reducing the time of production while increasing their mechanical performances
The half-life of Fr in Si and Au at 4K and at mK temperatures
The half-life of the decaying nucleus Fr was determined in
different environments, i.e. embedded in Si at 4 K, and embedded in Au at 4 K
and about 20 mK. No differences in half-life for these different conditions
were observed within 0.1%. Furthermore, we quote a new value for the absolute
half-life of Fr of t = 286.1(10) s, which is of comparable
precision to the most precise value available in literature
Variational two-particle density matrix calculation for the Hubbard model below half filling using spin-adapted lifting conditions
The variational determination of the two-particle density matrix is an
interesting, but not yet fully explored technique that allows to obtain
ground-state properties of a quantum many-body system without reference to an
-particle wave function. The one-dimensional fermionic Hubbard model has
been studied before with this method, using standard two- and three-index
conditions on the density matrix [J. R. Hammond {\it et al.}, Phys. Rev. A 73,
062505 (2006)], while a more recent study explored so-called subsystem
constraints [N. Shenvi {\it et al.}, Phys. Rev. Lett. 105, 213003 (2010)].
These studies reported good results even with only standard two-index
conditions, but have always been limited to the half-filled lattice. In this
Letter we establish the fact that the two-index approach fails for other
fillings. In this case, a subset of three-index conditions is absolutely needed
to describe the correct physics in the strong-repulsion limit. We show that
applying lifting conditions [J.R. Hammond {\it et al.}, Phys. Rev. A 71, 062503
(2005)] is the most economical way to achieve this, while still avoiding the
computationally much heavier three-index conditions. A further extension to
spin-adapted lifting conditions leads to increased accuracy in the intermediate
repulsion regime. At the same time we establish the feasibility of such studies
to the more complicated phase diagram in two-dimensional Hubbard models.Comment: 10 pages, 2 figure
QuantumATK: An integrated platform of electronic and atomic-scale modelling tools
QuantumATK is an integrated set of atomic-scale modelling tools developed
since 2003 by professional software engineers in collaboration with academic
researchers. While different aspects and individual modules of the platform
have been previously presented, the purpose of this paper is to give a general
overview of the platform. The QuantumATK simulation engines enable
electronic-structure calculations using density functional theory or
tight-binding model Hamiltonians, and also offers bonded or reactive empirical
force fields in many different parametrizations. Density functional theory is
implemented using either a plane-wave basis or expansion of electronic states
in a linear combination of atomic orbitals. The platform includes a long list
of advanced modules, including Green's-function methods for electron transport
simulations and surface calculations, first-principles electron-phonon and
electron-photon couplings, simulation of atomic-scale heat transport, ion
dynamics, spintronics, optical properties of materials, static polarization,
and more. Seamless integration of the different simulation engines into a
common platform allows for easy combination of different simulation methods
into complex workflows. Besides giving a general overview and presenting a
number of implementation details not previously published, we also present four
different application examples. These are calculations of the phonon-limited
mobility of Cu, Ag and Au, electron transport in a gated 2D device, multi-model
simulation of lithium ion drift through a battery cathode in an external
electric field, and electronic-structure calculations of the
composition-dependent band gap of SiGe alloys.Comment: Submitted to Journal of Physics: Condensed Matte
The generalized lock scheduling problem: an exact approach
The present paper introduces an integrated approach to solving the generalized lock scheduling problem. Three interrelated sub problems can be discerned: ship placement, chamber assignment and lockage operation scheduling. In their turn, these are closely related to the 2D bin packing problem, the assignment problem and the (parallel) machine scheduling problem respectively. In previous research, the three sub problems mentioned were considered separately, often using (heuristic) interaction between them to obtain better solutions. A mixed integer linear programming model is presented and applied to instances from both inland locks and locks in a tide independent port. The experiments show that small instances incorporating a wide range of real-life constraints can be solved to optimality