310 research outputs found

    Direct visualization of magnetic vortex pinning in superconductors

    Full text link
    We study the vortex structure in a Pb film deposited on top of a periodic array of ferromagnetic square microrings by combining two high resolution imaging techniques: Bitter decoration and scanning Hall probe microscopy (SHPM). The periodicity and strength of the magnetic pinning potential generated by the square microrings are controlled by the magnetic history of the template. When the square rings are in the magnetized dipolar state, known as the onion state, the strong stray field generated at the domain walls prevents the decoration of vortices. SHPM images show that the stray field generated by the dipoles is much stronger than the vortex field in agreement with the results of simulations. Real space vortex imaging has revealed that, in the onion state, the corners of the square rings act as effective pinning centers for vortices.Comment: To be published in Phys. Rev.

    Application of a novel diamond detector for commissioning of FLASH radiotherapy electron beams

    Get PDF
    Purpose: A diamond detector prototype was recently proposed by Marinelli et al. (Medical Physics 2022, https://doi.org/10.1002/mp.15473) for applications in ultrahigh-dose-per-pulse (UH-DPP) and ultrahigh-dose-rate (UH-DR) beams, as used in FLASH radiotherapy (FLASH-RT). In the present study, such so-called flashDiamond (fD) was investigated from the dosimetric point of view, under pulsed electron beam irradiation. It was then used for the commissioning of an ElectronFlash linac (SIT S.p.A., Italy) both in conventional and UH-DPP modalities. Methods: Detector calibration was performed in reference conditions, under 60 Co and electron beam irradiation. Its response linearity was investigated in UH-DPP conditions. For this purpose, the DPP was varied in the 1.2-11.9 Gy range, by changing either the beam applicator or the pulse duration from 1 to 4 Î¼s. Dosimetric validation of the fD detector prototype was then performed in conventional modality, by measuring percentage depth dose (PDD) curves, beam profiles, and output factors (OFs). All such measurements were carried out in a motorized water phantom. The obtained results were compared with the ones from commercially available dosimeters, namely, a microDiamond, an Advanced Markus ionization chamber, a silicon diode detector, and EBT-XD GAFchromic films. Finally, the fD detector was used to fully characterize the 7 and 9 MeV UH-DPP electron beams delivered by the ElectronFlash linac. In particular, PDDs, beam profiles, and OFs were measured, for both energies and all the applicators, and compared with the ones from EBT-XD films irradiated in the same experimental conditions. Results: The fD calibration coefficient resulted to be independent from the investigated beam qualities. The detector response was found to be linear in the whole investigated DPP range. A very good agreement was observed among PDDs, beam profiles, and OFs measured by the fD prototype and reference detectors, both in conventional and UH-DPP irradiation modalities. Conclusions: The fD detector prototype was validated from the dosimetric point of view against several commercial dosimeters in conventional beams. It was proved to be suitable in UH-DPP and UH-DR conditions, for which no other commercial real-time active detector is available to date. It was shown to be a very useful tool to perform fast and reproducible beam characterizations in standard clinical motorized water phantom setups. All of the previously mentioned demonstrate the suitability of the proposed detector for the commissioning of UH-DR linac beams for preclinical FLASH-RT applications

    Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry

    Get PDF
    Purpose: FLASH radiotherapy (RT) is an emerging technique in which beams with ultra-high dose rates (UH-DR) and dose per pulse (UH-DPP) are used. Commercially available active real-time dosimeters have been shown to be unsuitable in such conditions, due to severe response nonlinearities. In the present study, a novel diamond-based Schottky diode detector was specifically designed and realized to match the stringent requirements of FLASH-RT. Methods: A systematic investigation of the main features affecting the diamond response in UH-DPP conditions was carried out. Several diamond Schottky diode detector prototypes with different layouts were produced at Rome Tor Vergata University in cooperation with PTW-Freiburg. Such devices were tested under electron UH-DPP beams. The linearity of the prototypes was investigated up to DPPs of about 26 Gy/pulse and dose rates of approximately 1 kGy/s. In addition, percentage depth dose (PDD) measurements were performed in different irradiation conditions. Radiochromic films were used for reference dosimetry. Results: The response linearity of the diamond prototypes was shown to be strongly affected by the size of their active volume as well as by their series resistance. By properly tuning the design layout, the detector response was found to be linear up to at least 20 Gy/pulse, well into the UH-DPP range conditions. PDD measurements were performed by three different linac applicators, characterized by DPP values at the point of maximum dose of 3.5, 17.2, and 20.6 Gy/pulse, respectively. The very good superimposition of three curves confirmed the diamond response linearity. It is worth mentioning that UH-DPP irradiation conditions may lead to instantaneous detector currents as high as several mA, thus possibly exceeding the electrometer specifications. This issue was properly addressed in the case of the PTW UNIDOS electrometers. Conclusions: The results of the present study clearly demonstrate the feasibility of a diamond detector for FLASH-RT applications

    Radioluminescence results from an Al2O3:C fiber prototype: 6 MV medical beam

    Get PDF
    The Investigations of this article focus on the response of an Al2O3:C radioluminescence (RL) prototype for medical dosimetry in a 6 MV photon beam. The prototype can be configured using two types of detectors coupled to fiber-optic cables - single crystal (1 x 1 x 2 mm(3)) and droplets (in two grain sizes, 38 and 4 mu m, molded in r =0.5 mm,1= 200 mu m). By using the appropriate filters in addition to time gating it is possible to remove disturbance present during irradiation: the stem effect. Pre -irradiation of the dosimeters to a dose of 300 Gy made the memory effects in Al2O3:C negligible, so as to not impair the dosimetric properties of the system. The key findings are that the system is suitable for small field beam dosimetry, while giving overall good dose response in other features (i.e., beam profile, dose rate - FF and FFF modes). The results show that our prototype can be used for real time dose rate assessment in medical photon dosimetry without many correction factors. The 41 mu m RL measurement results are in excellent agreement (i.e. below 1%) with the dose delivered according to standard beam data

    Boosting the Figure Of Merit of LSPR-based refractive index sensing by phase-sensitive measurements

    Full text link
    Localized surface plasmon resonances possess very interesting properties for a wide variety of sensing applications. In many of the existing applications only the intensity of the reflected or transmitted signals is taken into account, while the phase information is ignored. At the center frequency of a (localized) surface plasmon resonance, the electron cloud makes the transition between in- and out-of-phase oscillation with respect to the incident wave. Here we show that this information can experimentally be extracted by performing phase-sensitive measurements, which result in linewidths that are almost one order of magnitude smaller than those for intensity based measurements. As this phase transition is an intrinsic property of a plasmon resonance, this opens up many possibilities for boosting the figure of merit (FOM) of refractive index sensing by taking into account the phase of the plasmon resonance. We experimentally investigated this for two model systems: randomly distributed gold nanodisks and gold nanorings on top of a continuous gold layer and a dielectric spacer and observed FOM values up to 8.3 and 16.5 for the respective nanoparticles

    Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging.</p> <p>Method and Materials</p> <p>We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion.</p> <p>Results</p> <p>According to optical measurements, the size of intra-fraction motion was (<it>median ± quartile</it>) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly.</p> <p>Conclusion</p> <p>Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques.</p

    Intrafraction motion of the prostate during an IMRT session: a fiducial-based 3D measurement with Cone-beam CT

    Get PDF
    Background: Image-guidance systems allow accurate interfractional repositioning of IMRT treatments, however, these may require up to 15 minutes. Therefore intrafraction motion might have an impact on treatment precision. 3D geometric data regarding intrafraction prostate motion are rare; we therefore assessed its magnitude with pre- and post-treatment fiducial-based imaging with cone-beam-CT (CBCT). Methods: 39 IMRT fractions in 5 prostate cancer patients after (125)I-seed implantation were evaluated. Patient position was corrected based on the (125)I-seeds after pre-treatment CBCT. Immediately after treatment delivery, a second CBCT was performed. Differences in bone- and fiducial position were measured by seed-based grey-value matching. Results: Fraction time was 13.6 +/- 1.6 minutes. Median overall displacement vector length of (125)Iseeds was 3 mm (M = 3 mm, Sigma = 0.9 mm, sigma = 1.7 mm; M: group systematic error, Sigma: SD of systematic error, sigma: SD of random error). Median displacement vector of bony structures was 1.84 mm (M = 2.9 mm, Sigma = 1 mm, sigma = 3.2 mm). Median displacement vector length of the prostate relative to bony structures was 1.9 mm (M = 3 mm, Sigma = 1.3 mm, sigma = 2.6 mm). Conclusion: a) Overall displacement vector length during an IMRT session is &lt; 3 mm. b) Positioning devices reducing intrafraction bony displacements can further reduce overall intrafraction motion. c) Intrafraction prostate motion relative to bony structures is &lt; 2 mm and may be further reduced by institutional protocols and reduction of IMRT duration
    • …
    corecore