885 research outputs found
Dual Rate Control for Security in Cyber-physical Systems
We consider malicious attacks on actuators and sensors of a feedback system
which can be modeled as additive, possibly unbounded, disturbances at the
digital (cyber) part of the feedback loop. We precisely characterize the role
of the unstable poles and zeros of the system in the ability to detect stealthy
attacks in the context of the sampled data implementation of the controller in
feedback with the continuous (physical) plant. We show that, if there is a
single sensor that is guaranteed to be secure and the plant is observable from
that sensor, then there exist a class of multirate sampled data controllers
that ensure that all attacks remain detectable. These dual rate controllers are
sampling the output faster than the zero order hold rate that operates on the
control input and as such, they can even provide better nominal performance
than single rate, at the price of higher sampling of the continuous output
Target Assignment in Robotic Networks: Distance Optimality Guarantees and Hierarchical Strategies
We study the problem of multi-robot target assignment to minimize the total
distance traveled by the robots until they all reach an equal number of static
targets. In the first half of the paper, we present a necessary and sufficient
condition under which true distance optimality can be achieved for robots with
limited communication and target-sensing ranges. Moreover, we provide an
explicit, non-asymptotic formula for computing the number of robots needed to
achieve distance optimality in terms of the robots' communication and
target-sensing ranges with arbitrary guaranteed probabilities. The same bounds
are also shown to be asymptotically tight.
In the second half of the paper, we present suboptimal strategies for use
when the number of robots cannot be chosen freely. Assuming first that all
targets are known to all robots, we employ a hierarchical communication model
in which robots communicate only with other robots in the same partitioned
region. This hierarchical communication model leads to constant approximations
of true distance-optimal solutions under mild assumptions. We then revisit the
limited communication and sensing models. By combining simple rendezvous-based
strategies with a hierarchical communication model, we obtain decentralized
hierarchical strategies that achieve constant approximation ratios with respect
to true distance optimality. Results of simulation show that the approximation
ratio is as low as 1.4
Optimal decentralized control design with disturbance decoupling
summary:In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal sense in the nontrivial case which is when the block off- diagonal terms of the plant have more columns than rows
Searching in Unstructured Overlays Using Local Knowledge and Gossip
This paper analyzes a class of dissemination algorithms for the discovery of
distributed contents in Peer-to-Peer unstructured overlay networks. The
algorithms are a mix of protocols employing local knowledge of peers'
neighborhood and gossip. By tuning the gossip probability and the depth k of
the k-neighborhood of which nodes have information, we obtain different
dissemination protocols employed in literature over unstructured P2P overlays.
The provided analysis and simulation results confirm that, when properly
configured, these schemes represent a viable approach to build effective P2P
resource discovery in large-scale, dynamic distributed systems.Comment: A revised version of the paper appears in Proc. of the 5th
International Workshop on Complex Networks (CompleNet 2014) - Studies in
Computational Intelligence Series, Springer-Verlag, Bologna (Italy), March
201
Enhancing the selective extracellular location of a recombinant E. coli domain antibody by management of fermentation conditions
The preparation of a recombinant protein using Escherichia coli often involves a challenging primary recovery sequence. This is due to the inability to secrete the protein to the extracellular space without a significant degree of cell lysis. This results in the release of nucleic acids, leading to a high viscosity, difficulty to clarify, broth and also to contamination with cell materials such as lipopolysaccharides and host cell proteins. In this paper, we present different fermentation strategies to facilitate the recovery of a V H domain antibody (13.1 kDa) by directing it selectively to the extracellular space and changing the balance between domain antibody to nucleic acid release. The manipulation of the cell growth rate in order to increase the outer cell membrane permeability gave a small ~1.5-fold improvement in released domain antibody to nucleic acid ratio without overall loss of yield. The introduction during fermentation of release agents such as EDTA gave no improvement in the ratio of released domain antibody to nucleic acid and a loss of overall productivity. The use of polyethyleneimine (PEI) during fermentation was with the aim to (a) permeabilise the outer bacterial membrane to release selectively domain antibody and (b) remove selectively by precipitation nucleic acids released during cell lysis. This strategy resulted in up to ~4-fold increase in the ratio of domain antibody to soluble nucleic acid with no reduction in domain antibody overall titre. In addition, a reduction in host cell protein contamination was achieved and there was no increase in endotoxin levels. Similar results were demonstrated with a range of other antibody products prepared in E. coli
An Information-Theoretic Analysis of Discrete-Time Control and Filtering Limitations by the I-MMSE Relationships
Fundamental limitations or performance trade-offs/limits are important
properties and constraints of control and filtering systems. Among various
trade-off metrics, total information rate, which characterizes the sensitivity
trade-offs and average performance of control and filtering systems, is
conventionally studied by using the (differential) entropy rate and
Kolmogorov-Bode formula. In this paper, by extending the famous I-MMSE (mutual
information -- minimum mean-square error) relationship to the discrete-time
additive white Gaussian channels with and without feedback, a new paradigm is
introduced to estimate and analyze total information rate as a control and
filtering trade-off metric. Under this framework, we enrich the trade-off
properties of total information rate for a variety of discrete-time control and
filtering systems, e.g., LTI, LTV, and nonlinear, and also provide an
alternative approach to investigate total information rate via optimal
estimation.Comment: Neng Wan and Dapeng Li contributed equally to this pape
Optimal Control of Systems with Delayed Observation Sharing Patterns
Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundatio
Evaluation of options for harvest of a recombinant E. coli fermentation producing a domain antibody using ultra scale-down techniques and pilot-scale verification
Ultra scale-down (USD) methods operating at the millilitre scale were used to characterise full-scale processing of E. coli fermentation broths autolysed to different extents for release of a domain antibody. The focus was on the primary clarification stages involving continuous centrifugation followed by depth filtration. The performance of this sequence was predicted by USD studies to decrease significantly with increased extents of cell lysis. The use of polyethyleneimine (PEI) reagent was studied to treat the lysed cell broth by precipitation of soluble contaminants such as DNA and flocculation of cell debris material. The USD studies were used to predict the impact of this treatment on the performance and here it was found that the fermentation could be run to maximum productivity using an acceptable clarification process (e.g a centrifugation stage operating at 0.11 L per m(2) equivalent gravity settling area per h followed by a resultant required depth filter area of 0.07 m(2) per L supernatant). A range of USD predictions was verified at the pilot scale for centrifugation followed by depth filtration. This article is protected by copyright. All rights reserved
- …