We consider malicious attacks on actuators and sensors of a feedback system
which can be modeled as additive, possibly unbounded, disturbances at the
digital (cyber) part of the feedback loop. We precisely characterize the role
of the unstable poles and zeros of the system in the ability to detect stealthy
attacks in the context of the sampled data implementation of the controller in
feedback with the continuous (physical) plant. We show that, if there is a
single sensor that is guaranteed to be secure and the plant is observable from
that sensor, then there exist a class of multirate sampled data controllers
that ensure that all attacks remain detectable. These dual rate controllers are
sampling the output faster than the zero order hold rate that operates on the
control input and as such, they can even provide better nominal performance
than single rate, at the price of higher sampling of the continuous output