6,017 research outputs found
Effective Monte Carlo simulation on System-V massively parallel associative string processing architecture
We show that the latest version of massively parallel processing associative
string processing architecture (System-V) is applicable for fast Monte Carlo
simulation if an effective on-processor random number generator is implemented.
Our lagged Fibonacci generator can produce random numbers on a processor
string of 12K PE-s. The time dependent Monte Carlo algorithm of the
one-dimensional non-equilibrium kinetic Ising model performs 80 faster than the
corresponding serial algorithm on a 300 MHz UltraSparc.Comment: 8 pages, 9 color ps figures embedde
A model for Intelligent Random Access Memory architecture (IRAM): cellular automata algorithms on the Associative String Processing machine (ASTRA)
In the near future, the computer performance will be completely determined by how long it takes to access memory. There are bottle-necks in memory latency and memory-to processor interface bandwidth. The IRAM initiative could be the answer by putting Processor-In-Memory (PIM). Starting from the massively parallel processing concept, one reached a similar conclusion. The MPPC (Massively Parallel Processing Collaboration) project and the 8K processor ASTRA machine (Associative String Test bench for Research \& Applications) developed at CERN \cite{kuala} can be regarded as a forerunner of the IRAM concept. The computing power of the ASTRA machine, regarded as an IRAM with 64 one-bit processors on a 6464 bit-matrix memory chip machine, has been demonstrated by running statistical physics algorithms: one-dimensional stochastic cellular automata, as a simple model for dynamical phase transitions. As a relevant result for physics, the damage spreading of this model has been investigated
Pre-Excitation Studies for Rubidium-Plasma Generation
The key element in the Proton-Driven-Plasma-Wake-Field-Accelerator (AWAKE)
project is the generation of highly uniform plasma from Rubidium vapor. The
standard way to achieve full ionization is to use high power laser which can
assure the over-barrier-ionization (OBI) along the 10 meters long active
region. The Wigner-team in Budapest is investigating an alternative way of
uniform plasma generation. The proposed Resonance Enhanced Multi Photon
Ionization (REMPI) scheme probably can be realized by much less laser power. In
the following the resonant pre-excitations of the Rb atoms are investigated,
theoretically and the status report about the preparatory work on the
experiment are presented.Comment: 8 pages, 6 figures, submitted to Nucl. Inst. and Meth. in Phys. Res.
Production of deuterium, tritium, and He in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV at the CERN SPS
Production of , , and He nuclei in central Pb+Pb interactions was
studied at five collision energies ( 6.3, 7.6, 8.8, 12.3, and
17.3 GeV) with the NA49 detector at the CERN SPS. Transverse momentum spectra,
rapidity distributions, and particle ratios were measured. Yields are compared
to predictions of statistical models. Phase-space distributions of light nuclei
are discussed and compared to those of protons in the context of a coalescence
approach. The coalescence parameters and , as well as coalescence
radii for and He were determined as a function of transverse mass at
all energies.Comment: 22 pages, 29 figures, 8 tables, for submission to Phys. Rev.
Phase-space dependence of particle-ratio fluctuations in Pb+Pb collisions from 20A to 158A GeV beam energy
A novel approach, the identity method, was used for particle identification
and the study of fluctuations of particle yield ratios in Pb+Pb collisions at
the CERN Super Proton Synchrotron (SPS). This procedure allows to unfold the
moments of the unknown multiplicity distributions of protons (p), kaons (K),
pions () and electrons (e). Using these moments the excitation function of
the fluctuation measure [A,B] was measured, with A and
B denoting different particle types. The obtained energy dependence of
agrees with previously published NA49 results on the related
measure . Moreover, was found to depend
on the phase space coverage for [K,p] and [K,] pairs. This feature most
likely explains the reported differences between measurements of NA49 and those
of STAR in central Au+Au collisions
Measurement of event-by-event transverse momentum and multiplicity fluctuations using strongly intensive measures and in nucleus-nucleus collisions at the CERN Super Proton Synchrotron
Results from the NA49 experiment at the CERN SPS are presented on
event-by-event transverse momentum and multiplicity fluctuations of charged
particles, produced at forward rapidities in central Pb+Pb interactions at beam
momenta 20, 30, 40, 80, and 158 GeV/c, as well as in systems of
different size (, C+C, Si+Si, and Pb+Pb) at 158 GeV/c. This publication
extends the previous NA49 measurements of the strongly intensive measure
by a study of the recently proposed strongly intensive measures of
fluctuations and . In the explored kinematic
region transverse momentum and multiplicity fluctuations show no significant
energy dependence in the SPS energy range. However, a remarkable system size
dependence is observed for both and , with the
largest values measured in peripheral Pb+Pb interactions. The results are
compared with NA61/SHINE measurements in collisions, as well as with
predictions of the UrQMD and EPOS models.Comment: 12 pages, 14 figures, to be submitted to PR
- …