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Abstract

In the near future, the computer performance will

be completely determined by how long it takes to access

memory. There are bottle-necks in memory latency and

memory-to processor interface bandwidth. The IRAM

initiative could be the answer by putting Processor-In-

Memory (PIM).

Starting from the massively parallel processing con-

cept, one reached a similar conclusion. The MPPC

(Massively Parallel Processing Collaboration) project

and the 8K processor ASTRA machine (Associative

String Test bench for Research & Applications) devel-

oped at CERN [26] can be regarded as a forerunner of

the IRAM concept.

The computing power of the ASTRA machine, re-

garded as an IRAM with 64 one-bit processors on

a 64�64 bit-matrix memory chip machine, has been

demonstrated by running statistical physics algorithms:

one-dimensional stochastic cellular automata, as a sim-

ple model for dynamical phase transitions. As a rele-

vant result for physics, the damage spreading of this

model has been investigated.

1 Introduction

Over the last two decades we became witnesses of
an information-technological revolution. The perfor-
mances of basic computing devices (processor, memory,
network) has grown exponentially. However the rate of
speed growth was di�erent. While the single processor
speed has increased 60 % per a year the DRAM access
time decreased by only 10 % yearly. This results in an
increasing processor-memory unbalance, excluding the
possibility of fast growth achieved by the processors
even with additional hardware and software complex-
ity (cashes, complicated compilers). It was found that
cashes don't work very well (example the alpha 21162
chip with 2 levels of cashes spends 75 % of all CPU time
waiting for memory access) and following the trends
the situation will be even worse in the future.

A natural solution for this problem suggested by D.
Patterson [25] would be the integration of processors
into the memory chips (PIM) making intelligent RAMs
(IRAM). So the processors can access the memory ma-
trix bits with a huge bandwidth without using costly
cashes or complicated compiler algorithms etc.

Ancestors of the IRAM idea can be found among
graphics accelerators, in microprocessor+cash chips
and in SIMD, MIMD parallel processing architectures.
But these e�orts were memory limited requiring mul-
tiple chips and therefore the inter-chip communication
overhead suppressed the advantages compared to the
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rapidly developing conventional, commercial machines.
One example of such a SIMD architecture is the AS-

TRA machine, which has been built as the outcome of
the Massively Parallel Processing Collaboration [27] as
a prototype and test-bed for real applications to be
introduced later.

Now the situation has changed:

� The DRAM capacity has reached the 1 Gbit/chip
integration, which is enough to store a typical
program.

� The processor-memory speed gap has became
larger than 2 orders of magnitude, causing ex-
pensive contortions of the current systems.

Independently of the knowledge of the current
IRAM research projects in 1997 we proposed a very
similar architecture, the "bit-matrix machine" [29] mo-
tivated by the need to improve our current ASTRA
SIMD architecture. In the age of informations graph-
ical images, multimedia processing will play a promi-
nent role. That requires the processing of huge data in
a SIMD like fashion. We have shown that our proposed
architecture �ts very well to diverse applications like
matrix algorithms [29, 30] or computer graphics[23].

In this new paper we demonstrate with the help of
the ASTRA machine, that the IRAM architecture is
applicable for simulations in statistical physics too. We
show that new and well accepted simulation methods
can be implemented e�ectively on the ASP by map-
ping one cell variable per APE. We shall investigate the
critical phase transition of di�erent one-dimensional
stochastic cellular automata (SCA). In order to make
the simulations of the SCA feasible on the ASP we
needed fast, on-processor random number generator
(RG). Since the memories of APE-s are very limited
we implemented a lagged Fibonacci RG with limited
(18-bit) resolution. That means that although the RG
cycle is large, the accuracy of the probability that we
can achieve is 2�18, which is enough, since usually the
maximum accuracy what we need is 4� 5 digits. The
algorithm of this RG will be shown in section 3. To
illustrate the way of ASP programming in section 5
we shall show some tricks of the algorithm (threshold-
ing etc.). In section 6 we introduce time dependent
simulations to measure survival probability and crit-
ical exponents. Two SCA possessing di�erent set of
critical exponents (universality classes) have been cho-
sen to test the algorithms and the random generator.
The critical exponents, that we have determined with
great accuracy are all in accordance with previous re-
sults. Finally in section 7 we apply the method to mea-
sure damage spreading and investigate the relation of
damage spreading transition to the parity conserving

phase transition as well. Timing results will be com-
pared with serial and other parallel machine's data.

2 The ASTRA machine

The associative string processing (ASP) ASTRA
machine has been built as the outcome of the Mas-
sively Parallel Processing Collaboration [27] as a pro-
totype and test-bed for real applications. Existing ma-
chines with 4 and 8K processors are real examples of
massively parallel machines. The processors (APE-s)
have very simple structure: 64-bit memory register, 1-
bit adder CPU and a few 
ag bits for special purposes.
The communication is also as simple as possible; basi-
cally a couple of string buses connecting the APE-s to
the central controller, plus a one-bit inter APE com-
munication channel, but the special associative func-
tions make it a quite 
exible architecture. The basic
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Figure 1. Associative String Processor (ASP)
architecture

designing idea was to integrate as many as possible of
these simple APE strings on a simple chip, making it
an e�ective tool for processing large quantity of data in
real time. This architecture, and the basic operations
(convolution type) for which it was designed make it
applicable for simulating cellular automata (CA).

As it was mentioned the APE-s are very simple pro-
cessing elements, built up from a one-bit adder, a 64-bit
memory register, where each bit in the registers can be
selected in parallel for all APE by the central controller.
There is a 6-bit \Activity Register" a Carry, an Activ-
ity, and tagging 
ags in each APE, see Figure 2. The
central controller, the "LAC", dictates the program to
be executed by each APE, makes the Input/Output
data transfer between the 32-bit Data Bus, the 6-bit
ternary-logic Activity Bus and its global registers. It
is connected to the Inter-APE communications network
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Figure 2. Associative Processing Element

by left and right links of the ASP substring (TagShift
operations) and to the global Match Reply line.

The detailed description can be found in [17]. To
minimize the data movement the APE-s are content
addressable via the Data and the Activity Buses and
the comparators with ternary logic (1,0,dont'care).

The 
ow of instructions roughly starts as follows.
Partition of the string, according to some architecture
(e.g. subdivision to substrings etc.) �tting the best to
our data structure. Partition of the local memories of
APE-s simultaneously. Each operation is built of two
main parts:

� Selection of operands

{ by selection of bits within the memory

registers of all APEs,

{ by content addressing (\Tagging") of

APEs (this involves logical function of Data

and Activity Register bits)

{ and by an activation of some

neighbourhoods of the selected APEs.

� The execution of the logical functions on the
operands and storing them to the selected places

The horizontal and vertical repartitioning of the string-
memory can be repeated any time during the program

ow.

3 The random number generator

Owing to the bit-addition capabilities of APE-s, a
natural choice for random generator was a \lagged Fi-
bonacci" generator :

xi = (xi�l � xi�k � c) mod 2b; (1)

where the lags are in practice (l; k) : (17; 5) ; (55; 24);
(24; 10) ..., and the carry c comes from a previous gen-
eration step. We choose (l; k) : (17; 5), which is used in
the Connection Machine 5 for parallel random number
generation too. This type of generator has a very long
cycle in general [16, 18].

Generating \good" random numbers is not an easy
task, one can never be sure of the true randomness of
a very long sequence and as digital computers have
been developed more and more generators failed on
more and more demanding statistical tests [16]. In fact
the growing number of scienti�c papers and disputes
aiming to increase the quality of random generators
shows that it is far from being solved.
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Figure 3. The random number generator al-
gorithm

We have tested our generator by checking the results
on CA simulations. The 64-bit long xi random num-
bers are loaded along the 64-bit segmented ASP string,
so that each APE contains one bit of xi, i 2 (1::18) (see
Fig. 3). Therefore the bits of di�erent random num-
bers make up a random integer word of size 18 in each
APE. The advantage of this kind of representation is
that it does not take too much register space (since we
don't need too high resolution) but still we have a long
period (determined by the length (64) of xi. Further-
more we can execute the additions in bit parallel with
the \look-ahead carry algorithm", which avoids carry
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propagation. To build random words for all APE-s we
update the 18 bits sequentially within 18 simple oper-
ation cycles.

4 Cellular automata

Physicists became interested in CA, invented by von
Neumann, when they discovered, that CA with some
external noise (stochastic CA (SCA)) can be regarded
as models of statistical physical systems [31]. Since the
detailed balance condition 1 is not necessarily satis�ed
during the evolution, the systems are not converging to
a thermodynamic equilibrium. Therefore SCA in gen-
eral provide a model for non-equilibrium systems. This
area of statistical physics is far less known than the
equilibrium physics and therefore much interest is paid
for it currently. It turned out that this �eld covers a
very rich area of phenomena ranging from physical and
chemical reactions to biological and economical mod-
els. One can model with it complex systems of many
variables, which can be humans (e.g voter models or
disease spreading), animals (e.g. races of populations),
economical units (e.g. crashes of stock exchange), ve-
hicles (e.g. tra�c models), elementary particles and
many other things [11].

Our interest now is concentrated on the exploration
of phase transitions and critical phenomena. They are
connected to many other new topics like self organ-
ised criticality, chaotic systems, fractals etc. The ad-
vantage here is that even one-dimensional systems may
exhibit phase transitions and di�erent critical phenom-
ena. Therefore these low-dimensional \toy models"
serve as learning base of more complex systems. Fur-
thermore in many cases the real physical space is low-
dimensional.

5 ASP algorithmic tricks

The random number integers should be compared to
some threshold value in order to make a decision (see
Fig.3). For this purpose the global \SerialShiftRegis-
ter" of the controller (LAC) was used. We load the
pt 2 [0; 218) integer threshold in it at the initialisation,
which is the rescaled p 2 [0; 1) value. Then we use the
test-and-rotate command of the LAC to apply parallel
thresholding for all APEs simultaneously from the most
signi�cant bit to the least signi�cant bit. The generator
works in a constant number of steps, the thresholding
requires 18� 2 steps.

1P (fsg)W (fsg ! fs;g) = P (fs;g)W (fs;g ! fsg), where
P (fsg) is the probability of a state, and W is the transition
probability

The CA automaton rule is easily parallelizible. We
demonstrate it on the stochastic Rule 18 (Fig. 4).
This is a rule, according to the state of s(i; t) 2
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Figure 4. Stochastic Rule 18 CA algorithm on
the ASP

(0; 1) variable at time t and space i is determined by
s(i � 1; t � 1); s(i; t � 1) and s(i + 1; t � 1). For the
deterministic Rule 18 we get a 1 at time t if just one
of the neighbours of s(i; t� 1) was 1 and s(i; t� 1) was
in 0 state. The possible cases look like :

t-1: 100 001 000 111 011 110 010 101

t: 1 1 0 0 0 0 0 0

The nearest neighbour communication can be done
in parallel for all APEs by the \TagShift" operation
within 2 CPU clocks. The rule can be applied in 4
clock units by the \TagByte" and \BitWrite" instruc-
tions.

To make the CA random, we dilute the '1'-s with
probability p acceptance rule. If the random number
is greater than pt the '1' state is put to '0'.

Altogether we can see that updating the SCA state
can be done within a few clock cycles independently of
the size.

To process the information carried by the states
one would need in general global parameters ob-
tained by data concentration (ex.: counting the '1'-
s). The calculation of some statistical measure requires
O(log(system size)) time theoretically, limited by the
inter APE communications. We have chosen a simpler
variable for our demonstration: we measure the time
necessary for falling in the absorbing state. Indeed, the
presence of existing '1'-s can be checked by the global
\Match-Reply" capability of the ASP, and we only have
to count the elapsed time steps during a run, equal to
the number of updating cycles.

This SCA can have two di�erent type of steady
states { separated by a phase transition { by varying
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the acceptance probability. For small p values the sys-
tem always evolves to the \absorbing state" built up
from 0-s only and from which there is no return ac-
cording to the rule. For p > pc(� 0:809) a chaotic
steady state of �nite concentration emerges. At the
critical point the survival probability shows a power-
law behaviour characterised by some universal critical
exponent.

6 Time dependent Monte Carlo simu-

lation

Time dependent Monte Carlo simulation (TDS) sug-
gested by [10] have become a very precise and e�ective
tool in statistical physics. We start the system from a
single active state and follow its statistical properties
for a few thousand time steps. In this case we don't
let the maximum size of the active cluster to over-grow
the computer memory, therefore no �nite size e�ects
can come in. We have to take into account �nite time
corrections and statistical errors only. In this case map-
ping of the cellular space onto processors is not very
e�ective since at the phase transition point to the ab-
sorbing state the system is very sparse, plus we started
from a single active seed. List oriented algorithms ex-
ploit the processor power much better. We have chosen
to start our simulations on the ASTRA machine with a
one cell - to one APE mapping TDS of the Rule 18 SCA
because this is simple and there are well established re-
sults in the literature to check the programming and
the random number generator. Also this mapping can
algorithmically be very e�ective for slightly more com-
plex time dependent simulations, like damage spread-
ing (see section 7) or persistence measurements (re-
cently, one more critical exponent was proposed [3],
the persistence exponent �, associated with the prob-
ability p(t) / t��, that the global order parameter has
not changed sign up to time t after a quench to the
critical point [19]).

In general one can calculate the following quantities;

� survival probability: ps(t)

� concentration of '1' states: c(t)

� average mean square distance of the spreading of
'1' states from the center R2(t)

The evolution runs are averaged over Ns independent
runs for each di�erent value of p in the vicinity of pc
(but for R2(t) only over the surviving runs). At the
critical point we expect from theory that these quanti-
ties to behave in accordance with power law as t!1,
i.e.

ps(t) / t�� ; (2)

c(t) / t� ; (3)

R2(t) / tz : (4)

For our test purposes we measured the exponent �, of
the scaling function of the survival probability.

We have chosen for the �rst test a well known SCA,
the stochastic Rule 18 model [1, 28] possessing uni-
versality of the Directed Percolation (DP) or Reggeon
Field Theory[13, 5, 2]. Since the de�nition of this
model has been given already in section 5, we just
present the results here.

We followed the time evolution of this system for
t = 8192 time steps and averaged over Ns = 105 in-
dependent samples for each p control parameter. To
estimate the critical exponents we determined the lo-
cal slope:

��p(t) =
ln [ps(t)=ps(t=m)]

ln(m)
(5)

using m = 8. In the case of power-law behaviour we
should see a straight line as 1=t! 0, when p = pc. The
o�-critical curves should possess curvature. Curves cor-
responding to p > pc should veer upward, curves with
p < pc should veer downward. The Figure 5, shows
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ca
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Figure 5. TDS results for the slope �p(t) at
the critical point. Parameters correspond-
ing to curves from the bottom to top p =
0:809; 0:8092; 0:80948; 0:80949; 0:8095.

our result for this quantity as function of 1=t. As we
can see, the value p = 0:80948(1) results in the most
power-law like behaviour therefore the critical point is
there in agreement with former results of the Rule 18
SCA [1, 28]. For the critical exponent � we can read of
� 0:16. This value agrees with the most precise series
expansion estimate for the directed percolation [15] :
�DP = 0:1597(3).
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The other model, which is an exception from the ro-
bust class of DP is Grassbergers's B model. This model
belongs to the so called \Parity Conserving" (PC) uni-
versality [6, 12, 14, 20], because the number of particles
is conserved modulo 2 globally. It is realized by the fol-
lowing SCA (we show the con�gurations at t � 1 and
the probability of getting 1 at time t)

t-1: 100 001 101 110 011 111 000 010

t: 1 1 1 p p 0 0 0

The time evolution pattern for small p is a regular
chess-board (with double degeneracy), while for p >

pc it is chaotic. If we consider di�erences from the
alternating ground state pattern as kinks : 00 or 11, the
dynamics of these kinks is described by the processes
above. These kinks can be regarded either as particles
or \Bloch walls of a spin system". They can also be
mapped to surface growing problem with a roughening
transition.

For this model we also have performed simulations
using the ASTRA machine to measure exponent � and
the critical point. As the Figure 6 shows the results are
in good agreement with that of Grassberger[6]. The

-0.31

-0.29

-0.27

0.001 0.002 0.003 0.004 0.005

δ

1/t

Figure 6. TDS results for �(t) for nearly criti-
cal point values of p = 0:535; 0:538; 0:54; 0:545.
The statistical averaging was done over
10000 independent samples

exponent � is around 0:29(1), which agrees well with
the PC universality class value �PC = 0:285(2)[14].

7 Damage spreading calculations

Damage spreading simulations have become an im-
portant tool for exploring time-dependent phenomena

in statistical physics[7]. By applying it to spin sys-
tems or stochastic cellular automata (SCA) one fol-
lows the evolution of a single di�erence (damage) be-
tween two identical systems (replicas), driven by the
same random sequence. The initial damage may grow
or shrink depending on control parameters (tempera-
ture etc.) of the model. If there is a phase transition
between such regimes one can measure dynamical crit-
ical exponents very precisely[8]. Grassberger conjec-
tured that [9] damage spreading transitions separating
chaotic and non-chaotic phases always belong to the
DP universality class except they coincide with some
ordinary phase transition point of di�erent universal-
ity class. Examples for this hypothesis are the Ising
model (spin model of magnetic medium) with di�erent
dynamics and certain SCA. In case of absorbing phase
transitions there have been a few exception from the
DP universality class up to now. One of them is the
PC transition and therefore we thought it would be
interesting to investigate the damage spreading prop-
erties for models exhibiting this kind of phase transi-
tion. One candidate for this would be the Grassberger
B SCA, which is chaotic for p = 1 and ordered in the
p = 0 limiting cases, therefore there must be a damage
spreading transition in between.

The replica systems are started from random initial
conditions in this case and therefore the full capacity of
the parallel machine is used now at the beginning. We
applied periodic boundary conditions. We followed the
extinction of the damage in case of Grassberger's model
B. Similarly to the simple TDS case near the transition
point the damage survival probability curves veer up
or down showing that the initial damage survives or
heals in the long time limit. As �gure 7 shows the
two regimes are separated by a straight line meaning
power-like behaviour of the extinction. Therefore the
damage spreading critical point is at p = pd = 0:632(1)
not coinciding with the ordinary phase transition point
(pc = 0:54) of kinks. This means that the system at
the ordinary critical point (pc) is insensitive to pertur-
bations like random mixing because they die out expo-
nentially in time. The slope of the straight line deter-
mines the exponent �, which is 0:160(1) indicating DP
universality class in agreement with Grassberger's hy-
pothesis although the parity of the damage variables
is conserved modulo 2. This is similar to what was
found in PC-conserving systems, when the absorbing
state symmetry was broken by external �eld [24, 21].
Here the absorbing state symmetry is broken too, since
it is 
uctuating owing to pd > pc. This means that the
PC conservation is not su�cient condition for having
non-DP universality. More discussion on this topic is
in preparation [22]. In conclusion, the active phase is
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Figure 7. Log-log plots of the survival prob-
ability curves for different values of p =
0:62; 0:63; 0:632; 0:634; 0:64; 0:65. The statistical
averaging was done over 10000 independent
samples

divided up by the damage spreading critical point sim-
ilarly to the case of the Domany-Kinzel SCA [4, 9].

As for the timing, we achieved 2�10�7 sec / cell up-
date speed at the critical point. This is about one �fth
of the speed that we measured on FUJITSU AP-1000
supercomputer built up from 64 Supersparc processors
where we applied task parallelism. That means that
each processor runs the same program with di�erent
numbers to increase the statistics. That means that
the 8K ASTRA was about thirteen times faster than a
single Supersparc CPU.

8 Conclusions

E�cient program have been developed and tested
for the massively parallel ASTRA machine. The real-
ization of the fast on-processor random generator made
it possible to use the architecture for simulation of sta-
tistical physical systems. The generator and the algo-
rithm were tested by di�erent cellular automaton simu-
lations. Critical points and exponents were determined
with great accuracy and the timing results were com-
pared with sequential and other parallel machines data.
Since the hardware elements of the machine represent
the late 80-ies technology we can give a performance
scaling to show the e�ectiveness of the architecture. By
assuming 200MHz clock speed instead of the present 20
MHz and 106 number of processors contrary the present
8192 we could achieve a speed-up factor of � 1000 be-
cause of the linear scaling of the algorithm we presented
(the �rst initialisation of the random generator is the

only sequential communication along the string). We
have performed damage spreading studies resulting in
relevant physical results. The algorithms can easily be
developed further for other dynamical simulations.

We thank John Lancaster for the support he gave
concerning the ASTRA machine.
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