
Massively Parallel Associative String Processor
(ASP) for High Energy Physics

G. Vesztergombi

Central Research Institute for Physics

KFKI-RMKI, Budapest, Hungary

Abstract

Tracking and clustering algorithms for massively parallel string processor are
presented and their implementation on the ASTRA machine is demonstrated.

1. INTRODUCTION
Parallel computing is one of the "standard item" on the agenda of the Cern Schools of

Computing. See, for example, the excellent lectures in previous proceedings [1],[2],[3]. In
this lecture I should like to concentrate the attention to a special type of parallel systems
and demonstrate the basic ideas in a speci�c realization, the ASTRA machine. This
machine was presented in this School on a facultative tutorial session by F. Rohrbach
for the interested students and after the School it is continuously available at CERN for
registered local and remote users [4].

In order to better understand the spirit of this lecture I should like to emphasize that
I am not a computer specialist, but a physicist who was fascinated by the opportunity
to solve experimental physics problems by mapping them onto a new unusual computer
architecture.

1.1 Why ever faster computers?
Paolo Zanella asked this question in his '92 lecture. His answer was: "There are many

problems which seem to have unlimited appetite for Mips and M
ops". I �nd today the
only di�erence is that one hears more about Gips and Tera
ops. This appetite is well
illustrated by the simple observation: the "small" increase of the problem size demands
"much faster" rise in the amount of computation. For instance, the calculation of the
product of two matrices of size n requires n3 operations. That is, the problem doubling
requires an eight-fold increase in computation time.

In High Energy Physics (HEP) the ever increasing energy, luminosity and event com-
plexity are the driving forces for such unsatis�able appetite:

a) TRIGGER problem: In LHC pp collisions one should select by intelligent
trigger only a few events from the milliards of occurring interactions;
b) DATA VOLUME problem: In LHC heavy ion collisions one expects to record
events with 10 - 20 thousands of particles emerging from a single interaction, pro-
ducing very fast 1000 TeraBytes of information even at rather modest luminosities.

c) SIMULATION problem: For the correct data evaluation and background cal-
culation one uses simulated events. The simulation of the complex detectors with

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25266428?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

millions of active electronic channels at the necessary level of accuracy requires even
more computing power than the processing the experimental data itself.

In this situation it is no wonder why are the particle physicists so keen about the increase
of computing capacity.

1.2 Classi�cation
One way to increase computing capacity: GO PARALLEL! If you wish huge increase:

GO MASSIVELY PARALLEL! Using 1000 processing elements of capacity which is
similar to the microprocessors in modern RISC workstations really represents a quantum-
jump in performance, but here I should like to turn the attention toward an other possi-
bility where one goes even further applying million(s) of processors, of course, with very
much reduced individual capacity per processor. In order to put this idea in a more
general context Fig.1 shows a slightly modi�ed version of Flynn's classi�cation diagram
taken from ref. [1]. Corresponding to the single versus multiple and instruction versus
data stream choices, according to Flynn's classi�cation one can have four basic multi-
processor architectures: SISD (= Von Neumann machine), SIMD, MISD and MIMD. In
the next we shall deal mainly with SIMD-type systems, where all processors execute the
same instruction synchronously on the data stored locally. In the original �gure the
SIMD class contained only two main sub-classes: Pipelined + Vector and Parallel Array
Computers. It seems to be reasonable to distinguish the simple string case from the more
general array case, because combining two features: cheap (1-bit) processors AND ex-
tremely simple (1-dimensional) string-type inter-processor communication one can really
think about parallelism on extraordinary large scale.

Data streams

Instruction
streams SMIMD

 SPMD
Single program
Multiple data

MIMDMIMD

SIMD SIMD

SD

single

MD

multiple multiple

MD

SISD

SI

MI

MISD
local memory shared memory

message passing

All von
Neumann
machines

Cray
NEC
Fujitsu
Hitachi
IBM VF

DAP/AMT
CM-2
Masspar

 Illac IV

Transputers
Touchstone
Cubes
LANs

(Alliant)
Convex
Kendall Sq
BBN
Sequent

 Pipelined + Vector Parallel

MD

multiple

SIMD

MIMD

Parallel

STRINGArray Computers

Low MIMP

High SIMD

ASTRA

Multi

ASP-substrings

Same data
analysed
for different
topics by
different
machines

Fig. 1. Flynn's classi�cation

There is, however, a frequent objection against the astronomical increase of the number
of processors. In order to better understand this problem one should clarify the notion of
"speed-up" as a quality factor making judgment about the merits of di�erent architectures.

1.3 "Realistic" speed-up
It is the general assumption: Only part of a given algorithm can be parallelized. It

is hard to debate this fact if one regards the algorithms in an abstract way. From this
assumption directly follows the Amdahl's law: if an improvement is only applicable for
a fraction f of time:

Speed-up =
Old execution time

New execution time
=

1

(1� f) + f

N

<
1

1� f
:

Despite the fact that N processor speeds up N -times the given f fraction, after some not
too large value of N the sequential (1�f) part will dominate. Table 1. shows that already
relatively small N values almost saturating the speed-up limit set by the Amdahl's law.

||||||||||||||||||||||||{
f N Speed� up Asymptotic (N =1)
|||||||||||||||||||||||||
0.5 5 1.66666 2
0.9 90 9.00000 10
0.99 990 90.0000 100
||||||||||||||||||||||||{

Table 1. Fast saturation of speed-up due to Amdahl's law

Due to the fact that it is hard to imagine a program with less than 1 percent sequential
part it looks useless to build systems with more than 1000 processors.

In particle physics experiments, however, one is encountered with some speci�c cir-
cumstances which should be taken into account during the calculation of the "realistic"
speed-up. The measurement process consists of the recording of individual particle in-
teractions. When one interaction (= event) occurs, the whole detector is closed until
the system recovers and becomes ready for the next event. During the execution of the
experiment one tries to maximize the LIVE-TIME of the measurement relative to the
DEAD-TIME required for the detector's hardware recovery. In this sense one can make
an additional assumption:

If the sequential part of the data processing is not exceeding the hardware
dead-time portion, then the parallelism is fully paying o�, or in general:

"Realistic" speed-up =
Old execution time�DEAD-TIME

New execution time�DEAD-TIME

The above mentioned speci�city, that independent collisions are studied, provides an

other (rather trivial) way to beat the Amdahl's law: each event should be sent to an other
computer. Thus the inherent "event parallelism" can be used to eliminate the sequential
part completely: f) 1 (!!). This is also true for the event simulation.

Particle physics is not limited by Amdahl's law, thus we can bravely dream about
millions of processors, but it is limited in MONEY.

1.4 General strategies for parallel algorithms
Having the beautiful massively parallel hardware one can be still far away from the

real solution, because the selection and the implementation of the appropriate algorithm
is not at all a trivial problem. For illustration one can regard some intentionally simpli�ed
border case strategies:

1.4.1 Direct parallelization
This is a specially attractive strategy for SIMD machines, because it requires minimal

e�ort from the side of the programmer if he has already the sequential algorithm. It
can be well demonstrated by the classical anecdotal case when the headmaster asks the
teacher to �nd the "To be or not to be" quote in Shakespeare's Hamlet. If he is in a class,
then the quickest way to �nd it would be to assign one page to each student (assuming
large enough number of pupils) and give the order "scan your part and raise your hand,
if you �nd the quote". Of course, the teacher could do the same himself regarding the
whole volume as his part, but what a di�erence in speed !?

Unfortunately this strategy has only very limited value in practice, because most of
the problems do not have this simple repetitive nature.

1.4.2 Tailor made hardware for speci�c algorithm
If the problem is so important that it is worth to design a tailor made hardware system

for its solution one could really get an ideal arrangement. Let us demonstrate this in a
de�nite example, the matrix multiplication:

Cik =
X

AijBjk

In case of sequential algorithm n3 multiplications are executed by 1 processor. In
massively parallel machine one can assign one processor to each multiplication, which is
not totally crazy in view of our de�nition of really massive parallelism which requires for
n = 100 "only" one million processors. Thus only 1 multiplication is required and even if
it is much slower with the cheap processors, one can still have considerable gains. (The
human brain is working rather well along this principles.) In case of ASP, which will be

studied later in detail, this situation is realized, of course, only up to n <
3
p
N , where

N is the number of processors in the string. This is an example for the case, where the
computation time is independent of the problem size if the machine is big enough. (In
strict sense, if one takes into account the additions in the formula, one have to add a
log2(N) term too.)

1.4.3 Optimal mapping
In real life the machine is never big enough, therefore it is the task of the programmer

to search for optimal mapping of the problem to the given hardware. Considerable e�ort
is made to develop super clever CROSS COMPILERS which would able to discover the
generally hidden inherent parallelism within the problem and then able to exploit this by
adapting it to the hardware limitations. Probably that programmer genius is not born yet,
who is able to write this ideal compiler, but there are a number of characteristic parallel
algorithms which can teach the way for "manual" realization of optimal parallelization.
And it is a great pleasure to invent such parallel algorithms which doesn't have direct
analog sequential realization, developing some sense of "parallel thinking" which can use
instinctively the opportunities provided by the hardware.

2. ASSOCIATIVE "THINKING"
Associativity is an essential ingredient of human thinking. In computer science it is

used mainly in the restricted sense:
"content addressing".

The (complete or partial) matching of the content in di�erent parts of the computer
system resembles to the thinking process creating logical connections between seemingly
independent objects i.e. they become "associated". Newton's apple serves as a typical
example for one of the most famous association. In this case Newton was, who realized
the common content (namely, the gravitational attraction) which causes the free fall
of the apple from the tree and the circular motion of the Moon around the Earth.

2.1 Associative memory
In most of the cases the content addressing concerns the bit content of the memory

cells. In normal memories a unique address is assigned to each cell containing given
number of bits (= word).This word content is read out during the access to the mem-
ory. The associative memory works in a reverse way. The searched content is presented
simultaneously to each memory cell. One can have several outcomes:

a) NO-MATCH: no memory cell exists with the required content;
b) SINGLE-MATCH: only one cell is hit;

c) MULTIPLE-MATCH: the searched content is found in more than one cell.
Physically this means that each memory cell has an additional comparator unit. In

more developed systems one can also search for partial content matching. This subset
comparison is realized through ternary logics. The content addressing bus presents the
common searched content for each memory bit separately in 0, 1 or don0tcare states. This
comparator scheme with ternary input is illustrated in Fig. 2.

0 0 0 0 00 0 01 1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

x x x x x x x x xxxx1 1 1 1 1 10 0

COMPARATOR

MEMORY - CELL

(TERNARY) INPUT

MATCH

REPLY

Fig. 2. Content addressable (associative) memory

Using this "subset" feature of content addressing one can realize the so called PSEU-
DO-ADDRESSING. Let us take an example: if one stores in the �rst 10 bits of an
32-bit associative memory cell the serial number of the cell from 0 to 1023 and stores the
"real" information starting from the 11-th bit then content addressing in the �rst bits
will be equivalent with normal addressing in a 1k memory. Of course, this use is rather
uneconomical because almost one third of useful memory space is lost for addressing and
one needs a comparator for each cell.

2.2 Associative phone-book
One of the simplest application of associative memory relies on the above mentioned

pseudo-addressing scheme.Let us assign to each client a long memory cell which can
contain the name, phone-number, profession and address (Table 2.). In a normal phone-
book it is easy to �nd the phone-number if one knows the name, because they are printed in
alphabetic order. It is even more simpler in our associative memory, where the names can
play the role of pseudo-addresses replacing the serial numbers of the previous example
storing the name in the �rst segment of the long associative memory cell. The only
di�erence is that there can be "holes" between this type of pseudo-addresses, because
there are no names for all bit combinations. Additionally to this, if we search for a person
without telephone, there will be no correct match. Of course, there can be di�erent
persons with identical names. They produce multiple match-replies, but by taking the
generally short list of matched cells line-by-line one can easily identify the searched person
by help of the other attributes. Of course, all these possibilities are present in the normal
phone-book, but it is really a pain if one has a phone-number and doesn't remember the
person's name. Even in computerized version of the phone-book this reversed task is

rather time consuming in a sequential machine with normal memory, because in average
one should read one half of the total memory to get the answer for an existing client and
one should waste the full reading for the single bit "NO" information if there is no such
number in the book. In contrast, the associative memory gives the exact answer in a
single step (or in few steps of multiple-match, if more than one person is callable on the
given number). One can also easily �nd a quick answer for such type of questions:

Is there any dentist in the Main street, who has a phone?

name profession address number
ABA ABA physician Main str. 7 117 336
ABA BEA teacher Fleet str. 4 342 752
ABA EDE miller Rakoczi ave. 38 462 781
ABA IDA engineer Penny str. 15 279 347

ABA �ORS dentist Magyar str. 76 972 413
ABA TAS lawyer Sunset blv. 20 362 478
ABBA EVA hairdresser Museum sqr. 6 784 652

...

Table 2. Universal phone-book

2.3 Associative tree traversal
By simple use of associative memory one can easily solve formal mathematical prob-

lems too. In case of the tree traversal task one should identify all the ascendants of a given
node in a tree-graph. The Node and Parent names are assumed to be stored pairwise in
an array in the memory cells of the computer.

If you want to �nd all the direct ascendants of node H in the graph shown in Fig. 3.,
you �rst have to scan the array sequentially until you found Node name = H. This
gives the �rst parent, G stored in pair with H. Then you need to scan the array again
from the beginning until you reach Node name = G. This gives you H's grandparent. You
continue scanning in this way until you reach the root (a node with Null parent). The
resulting family list from H upward is: H, G, C, A.

A

B C

D E F G I

H M

L X

B A G B

 Parent

Node Name

D I C H A G F B M E

B C A G nil C B A G B

B C A G nil C B A G B

D I C H A G F B M E

D I C H A G F B M E

D I C H A G F B M E

B C A G nil C B A G B

B C A G nil C

Fig. 3. Tree-graph Fig. 4. Associative search

To implement the same tree on an associative machine, you would allocate a memory
cell to each node of the tree. In a similar way as before, each associative memory cell
would store the node name and the name of its parent . The main di�erence is that we
have content addressing (i.e. associative access) to �nd any node we want.

Again, imagine we want to �nd the ascendants of node H. Instead of scanning all the
elements one after each other to �nd the one containing H, the corresponding cell accessed
directly. Knowing the cell, the rest of its content provides the �rst parent, G. Next we
go straight to the element storing details of node G. Thus the second step gives the
grandparent. And so on... Thus the number of accesses needed to complete the task in
this way is the same as the number of node levels (in this case it is 4). See Fig.4.

Using the sequential method requires many more accesses to the data structure. The
exact number depends on the ordering of data in the array. If by chance one starts from
the lowest level, then the best case is �nished after 15 accesses (e.g. 1 to �nd L, 2 to �nd
H, 3), and the worst after 45 (11 to �nd L, 10 to �nd H, 9).

2.4 Associative string processor
In order to create from an associative memory an associative processor it requires

only a simple step. Adding a 1-bit processor unit to each memory cell where already
the comparator itself represents a primitive logical unit, one can modify the content of
the memory in a controlled way simultaneously in each cell depending on their original
content. This modi�ed content will react for the next content addressing instruction in
a di�erent way. By clever programming this can lead the way toward the solution of the
given problem.

The above system is becoming really
exible when one allows communication between
these associative processors, that is depending on the content of a given cell one can
in
uence the state of an other cell. The simplest possible communication between left
and right neighbours creates the 1-dimensional string like structure. This Associative
String Processor architecture concept was worked out in details by prof R.M. Lea and his
collaborators in Brunel University [5]. Despite of its conceptual simplicity this architecture
is rather
exible and provides ample opportunity to solve very complex problems. It turns
out to be specially e�ective in the case of so called iconic to symbolic transformation.

2.5 Iconic versus symbolic method
In particle physics and in many other areas it is a frequently occurring situation

what we can call the sensor/response paradigm. Human senses (especially the eye)
or technical monitor systems collect the information from their environments according
to some ordering in space and/or time. If one maps this information into a computer
system in such a way which reserves the basic inherent relations between the data units
in a faithful way, one speaks about "iconic" representation, because most frequently this
corresponds to some kind of 2-dimensional image or series of images. According to the
sensor/response paradigm, in a well developed system after massive data reduction and
feature extraction one derives the symbolic representation producing the list of objects,
providing the formal base for the decision and response process. In big HEP experiments
for example this appears as the trigger-decision paradigm shown in Fig. 5.

Signals

Multiple Data

Features

One Decision

iconic
observation

symbolic

Megabytes

electronic channels
image pixels

tracks, e, µ, g, jets, ...

representationTO

Detector

Channels
Object

Observables
- Massive data reduction
- Feature extraction

Fig. 5. The trigger-decision paradigm

One can, however, observe similar e�ects in more modest systems too, where the
comparative advantages of the iconic versus the symbolic representation can be explained
more directly. Fig. 6.a shows a part of a streamer chamber photograph in "iconic"
representation. Fig. 6.b gives part of the numerical "symbolic" (x,y) list representation,
which was created by a simple "zero-suppression" data reduction algorithm.

(101,107) (101,178) (101,227) . . . (101,875)

(102,108) (102,131) . . .

(107,104) . . .

 .

 .

 .

(579,102) . . . (736,914)

Fig. 6.a "ICONIC" representation Fig. 6.b "SYMBOLIC" (x,y) list representation

It is obvious that the symbolic point list requires much smaller memory space for
storage, but one looses or better to say hides the information whether a given point
belongs to a real track or to the background, or whether 2 points are belonging to the
same track or not.

It depends on the given problem which representation provides the most e�ective
algorithm. In case of particle track reconstruction the symbolic list method is easy if
there are only few coordinates on the list. For dense, complicated images the symbolic
representation has the disadvantage that the "trivial" topological relations, which are
obvious on the detector level, are lost.

One can however exploit very e�ectively the "topological associations" of elements on
the "raw-image" i.e. in the iconic representation applying the following techniques:

a) simple neighbourhood algorithms can be used (cluster search, track following
etc.);

b) whole picture could be processed by parallel evaluation of each pixel's sur-
roundings (so called locality of reference);

c) by careful mapping of the images the "associative e�ects" can be ampli�ed.

All these techniques call for computer architectures which are well adapted for "non-
numeric" calculations. Exactly this is the domain where the Associative String Processor
(ASP) may beat the other architectures. In ASP there is no need to translate the sequen-
tial algorithms into parallel ones, because one should run on ASP machines conceptually
di�erent new algorithms, and it is the pleasure of the programmer to invent the most
appropriate ones corresponding to the given hardware.

3. ALGORITHMS
The power of associative thinking can be demonstrated only by good examples of

convincing, simple and hopefully interesting algorithms performing the iconic to symbolic
transformation (at least conceptually) in a transparent way. In order to emphasize
the general nature of these algorithms we shall rely only on the basic features of the
Associative String Processor minimizing the references to any given realization which will
be discussed in subsequent sections. These basic features are:

i. associative memory cells;

ii. 1-bit CPU with some 1-bit registers;

iii. string communication between left and right neighbours.

3.1 Associative football referee
In the year of the '94 Soccer (Football) World Championship in the USA it seems to

be evident that one remembers the di�cult task of referees on the judgment concerning
the OFFSIDE situation. If there would be an on-line automatic electronic referee as in
many other branches of the sport all the debates could be avoided once for all. Here we
try to show that this is a very easy problem for an associative processor, if one treats it
on the iconic representation.

Let us assume there is a CCD camera far above the �eld whose resolution is good
enough to distinguish objects of size about 10 centimeters. For de�niteness we say that
to each 10*10 cm2 piece of the �eld corresponds in the CCD image a pixel. The basic
constituents of the game are coloured in di�erent ways: �eld is green, the lines are white,
the players of the A-team are red, the players of B-team are blue. (The model can be
complicated by more details but hopefully this is enough to understand the essence of the
algorithm).

If the camera is able to produce 1 image per millisecond (1 ms = 10�3 second) then
between 2 images the maximal displacement of the ball will be less than 4 centimeters,
assuming as a maximal
ying speed less than 144 km/hour = 40 m/sec. It corresponds
half of the pixel size, therefore it is completely adequate to evaluate the situation by this
frequency. Thus our electronic referee will produce a decision in every millisecond, of
course, it will disturb the human referees only in case of the OFFSIDE, thus the humans
can turn their attention to other aspects of the game.

The key point of the algorithm is the iconic mapping: each pixel has its own COM-
PUTER. It looks frightening to demand many thousands of computers for this purpose,
but don't forget they are simple and cheap. Nowadays one can by 64 Megabits on a single
normal memory chip, and the associative processors are "merely" intelligent associative
memory cells.

Team "A"

Team "B"

x

x=+L

x=-L

y

Fig. 7. Soccer �eld

Introducing the coordinate system according to Fig. 7. the string of processors will
be �lled along the horizontal lines at the given x values, starting from x = �L �nishing
by x = +L. That is team-A intends to direct the ball to goal at x = �L.

In any moment one can identify four basic states as it shown in Fig. 8.:

a) Ball is free: [0 , 0];

b) Ball belongs to team-A: [A , 0];

c) Ball belongs to team-B: [0 , B];

d) Ball belongs to team-A AND team-B: [A , B].

[0,0] [A,0] [0,B] [A,B]

Fig. 8. Ball states

We intentionally left out the case when the ball is below some player and assumed if
they are in the same pixel, then the ball is always above the player.(As the inclusion of
this scenario is also well adapted for an associative algorithm, but for sake of simplicity
we leave its realization to the intelligent reader.)

In this model realization we test the OFFSIDE rule formulated in the following way:

" Any player between an opponent's goal and last player (unless he was followed
the ball) is OFFSIDE and out of play." (Private comment: the goal-keeper doesn't
count.)

Reformulation of the rule in ASSOCIATIVE LOGICS:
If the ball is in the moment time = tn in state Sn = [0; 0], but it was in moment

time = tn�1

A: in state Sn�1 = [A; 0], then team-A is on OFFSIDE if:

min[xA] < min[xB];

where the minimumfunction doesn't include the goal keeper assuming some distinguishing
mark on him.

B: in state Sn�1 = [0; B], then team-B is on OFFSIDE if:

max[xA] < max[xB];

where the minimumfunction doesn't include the goal keeper assuming some distinguishing
mark on him.

C: There is not OFFSIDE in cases if Sn�1 = [0,0] or [A,B].

Knowing that the size of the player is always larger than the ball size the calculation of
state Sn is rather straightforward by content addressing. If there is a "ball contact" e.g.
with team-A then there will be at least one orange pixel which has a red pixel in its direct
neighbourhood.

Please realize the elegance of this approach: the algorithm is completely independent
of the image shape of the player (whether is he running, standing or lying in the given
moment), where are his arms or legs (if they coloured correctly). Here the topological
content addressing gives the answer without any calculation. It is also irrelevant that
how many cells are occupied either by the ball or the player, because the neighbourhood
test will be executed by each associative processor parallelly which has the "ball" content,
and all the ball containing cells will give a common report by OR-ing the results of
individual searches, thus the so called single "match-reply" will identify the ball situation
uniquely.

Using the stored value of Sn�1 one can compare it with Sn. If one identi�es case A
or B, then calls for min or max routines, respectively, otherwise just stores Sn for next
time to be used as Sn�1. These min-max algorithms relies on the x-coordinates of the
players. By the above mentioned "pseudo-addressing" scheme one can pre-store in each
processor's associative memory the corresponding x value because it is �xed during the
match assuming that the camera sees the whole �eld without any movement. This is a
1-dimensional problem: one should search for the �rst and last red or blue cell and read
out the corresponding x value. Of course, as in case of ball-contact routine, it is irrelevant
what is the concrete image shape of the players. Thus the decision can be made really
by the shortest time delay, because after 2 parallel searches one should make only one
single numerical comparison. This can be executed much faster than 1 msec, the technical
challenge is not in computing but in the detection hardware, whether the CCD interface
is fast enough to load the images into the ASP computer in time.

It is worth to mention that if one would have a camera with better resolution (and
have correspondingly more processors) the algorithm would be identical! That is this
algorithm is SCALABLE.

3.2 Cluster algorithms
In HEP experiments the particles produce clusters in a number of detectors: calorime-

ters, CCD cameras, TPC's etc. Sometimes for a fast decision one is interested only in
the number of "good" clusters; sometimes their shape is important - sometimes not;
sometimes one needs to collect all the information which belongs to the cluster or it is
enough to �nd some characteristic point in it etc. In the following we try to present some
demonstrative examples for di�erent types of basic cluster algorithms.

As in the soccer case we assume that the data are presented in 2-dimensional iconic
form, mapped line-by-line along the string and each pixel has its own processor except
the cases when it is stated explicitly otherwise. We de�ne a cluster as a connected subset
of pixels which are touching each others at least by their corners.

3.2.1 Cluster classi�cation
It is a frequently occurring case in HEP that the real particles produce clusters which

obligatorily have at least 2 active detector channels e.g. in calorimeters the induced
showers are extended over several detector cells. In contrast to this the randomly occurring
thermic or electric noise produces signals in an uncorrelated way mainly in individual
single channels. It would be very useful to get rid of this noisy background clusters as
fast as possible. In the iconic representation this task means a cluster search algorithm
which identi�es the single pixel clusters. It is simple enough to start our image processing
lesson.

Before going into the details of the algorithm, we introduce the notion of ACTIVITY-
BITS. These are special 1-bit registers in the CPU attached to each associative memory
cell, where the iconic (in this case only black-and-white, binary) image is stored. These
are denoted by A1, A2 ... A6 and are also content addressable as the memory cells. The
algorithm itself consists of two phases: preprocessing and decision which are illustrated
on a small representative example in Fig. 9. A: Preprocessing

1. LOADING of the binary image into the IMAGE-BIT of the memory;
2. MARK the A1 activity bit in those processors where the IMAGE-BIT is equal
to 1;

3. SHIFT "LEFT-RIGHT" the content of the IMAGE-BIT and store 1 both in the
e�ected processor's A2 activity-bitsAND memory IMAGE-BIT. Please remember:
this move will destroy the original image, but we were careful to preserve a copy in
form of the A1 activity-bits;

4. SHIFT "UP-DOWN" (it means shifting by the line length) all the corrected
IMAGE-BITS, but in this case store them only in the A2 activity-bits. Please
remember: this is an OR-ing procedure if in a given processor A2 was already set to
1, then it remains in that state, only those A2 bits will be e�ected by the subsequent
setting which had 0 previously.

The essence of this procedure that if a pixel has a neighbour then by the shifting
exercise its A2 activity-bit will be obligatorily set. In case of single cluster pixel there is
no neighbour which could be smeared out to cover it.

A2

MARK "LEFT-RIGHT"

A1

MARK A1

MARK "UP-DOWN"

MULTI

A1*A2

SINGLE

A1*A2

IMAGE-BIT

Fig. 9. Single cluster selection

B: Decision

1. SINGLE (background) cluster selection:

One sets to 1 the IMAGE-BIT in all processors where

A1 � �A2 = 1

otherwise set to 0.

2. GOOD (multiple) cluster selection:

One sets to 1 the IMAGE-BIT in all processors where

A1 �A2 = 1

otherwise set to 0.

Of course, it is our choice which decision will be really executed. The second decision will
produce the background free image containing only the "good" clusters.

3.2.2 Cluster counting
In case of experiments where the number of cluster provides the key information for

the decision (e.g. one can distinguish KS and KL kaon decays by the number of photons
emerging from the decay chain: 4 and 6 respectively) it is crucial to have the previously

described fast cleaning algorithm, but we should have an equally fast counting algorithm
too. The basic idea is to reduce by an universal algorithm (universal means independent
of cluster size and shape) each cluster to a single point and then count the surviving
single point pixels in the image. First we start with an extremely simple algorithm then
by gradual improvements we reach the satisfactory version.

A: POINT killer method
By using the same technics described above each pixel which contains 1 in its IMAGE-

BIT kills the eventual hits (i.e. "1"s) in four neighbouring directions: left, left-above,
above and right-above. Illustrative examples are shown in Fig. 10. In Fig. 10.a one
sees that the not vetoed surviving pixels really achieves the correct reduction. But this
method fails, for instance, in cases like shown in Fig. 10.b, where there is a "double step"
on the cluster's down edge. Instead the correct 1 we get 2 clusters.

Fig. 10.a Good Fig. 10.b Bad

B: INTERVAL killer method
The above problem is avoided by using intervals instead of points. Intervals, which

are represented by a contiguous string of neighboring horizontal hits, are well adapted to
the ASP line (string) architecture and represents the most natural generalization of the
single processor concept to a bunch of consecutive processors along the communication
line. The basic steps of the procedure are:

. De�ne INTERVALS in line i;

.. INTERVAL is killed if it touches at least one hit of an other INTERVAL in the
"down" line i+ 1;

... COUNT the surviving INTERVALS.
Though this routine cures the basic problem of the killer method for "convex" clusters,

it fails in the more sophisticated "concave" cases shown in Fig. 11.b.

Fig. 11.a Good Fig. 11.b Bad

C: Single-hole INTERVAL killer method
In HEP the size of the clusters is generally not so large, therefore one doesn't expect

excessively extended "concave" structures, i.e it is enough to take care of single gaps.
With a slight modi�cation of the algorithm one can �ll these single "concave holes". This
�lling however will blow-up the whole cluster by one pixel in each side on the horizontal
direction, therefore in order to avoid cluster merging we should assume that there is at

least 2 empty pixels in line i between points belonging to di�erent clusters. Fig. 12. shows
the modi�ed procedure, where the bridging step was added as a �rst step rede�ning the
surviving INTERVALS.

Fig. 12. Corrected interval killer method

It is worth to remark that already the orig-
inal INTERVAL algorithm is unsensitive the
vertical column-type non-convexities shown in
Fig. 13. As a last remark that one can add
to the cluster counting topic is that it can be
made extremely fast by avoiding the line shift
during the smearing process (which requires as
many steps as long is the line) if one makes
double mapping into the ASP. By appropriate
interface one can load the content of 2 lines in
each pixel line, because there is enough band-
width. In this case the execution time of the
cluster counting algorithm will be completely
independent of the size of the image, that is
the scalability will hold exactly. Fig. 13

3.2.3 Convolution
So far we dealt with the clusters as "binary objects": signal/noise or one cluster one

count. In a number of cases some kind of global characteristic of the pixels of a cluster
is carrying the relevant information. For example in calorimeters the cluster energy sum
can be regarded as such a global parameter. If one knows the approximate size and shape
of the cluster then summing up the energy content of the individual pixels belonging to a
given cluster in the "middle" cell one gets the total cluster energy. Some simple frequently
used cluster shapes are shown in Fig. 14.a and b. This energy sum procedure represents
a special case of convolution which is generally de�ned by the following formula:

Ci;j =
X

bm;nAi+m;j+n � k � m;n � k;

where the bm;n kernel is shown in Fig. 14. for the energy sum in cases k = 1 and k = 2.

b)

a)

N N N

[b] =

[b] =

1 1 1

1 1 1

1 1 1
k=1

k=2

b
-2,+2

N C N

N N N

N I O I N

N I N

N

b-1,+1

0 1 1 1 0

1 1 1 1 1

0 1 1 1 0

N

N I N

0 0 1 0 0

0 0 1 0 0

Fig. 14. Peak kernels

In sequential calculation the most e�ective way is �rst identify the cluster center
and then collect the sum from the surrounding cells. In case of parallel computing one
can reverse this order. Each cell can assume about itself that it is a cluster center and
collecting the sum it can execute the calculation in parallel once for all. The real cluster
centers will be distinguished by the fact that they really will contain the full content of
the cluster, therefore the accumulated sum in them will show a local maximum.

The general convolution algorithm can be executed by standard SHIFT and ACCU-
MULATE commands in a very straightforward way which doesn't pro�t really from the
associative character of the machine, therefore we don't discuss it in details.

3.2.4 Peak (maximum) �nding
In most frequent cases in calorimetry the most interesting cluster is the one which

has the highest energy. Therefore it has a special interest to �nd the pixel with maximal
memory content which after the eventual convolution corresponds the energy of the highest
energy cluster. We illustrate the associative logics involved in this procedure on a simple
numerical example.

Initially one assumes that any of the integers shown in Fig. 15.a could be the maxi-
mum. Think of these integers as being in a set called "potential maximums". We need
to reduce this set in some way until only the maximum value remains.

The reduction of this set is performed by a particular test. Those elements that fail
the test are no longer considered, i.e. are removed from the set of "potential maximums".
Repeat this test until the true maximum is found. Picture the elements of the array as
binary numbers (Fig. 15.b) on such a way that the highest bit is at the top.

0 0 0 0 0 0 0 0

0 1 1 1
1 0 1 1

1 0 0 1 0 1 1 1

0 1 1 0
0 1 1 1

0 0 0 0 0 0 0 0

0 1 1 1
1 0 1 1

1 0 0 1 0 1 1 1

0 1 1 0
0 1 1 1

0 0 0 0 0 0 0 0

0 1 1 1
1 0 1 1

1 0 0 1 0 1 1 1

0 1 1 0
0 1 1 1

0 0 0 0 0 0 0 0

0 1 1 1
1 0 1 1

1 0 0 1 0 1 1 1

0 1 1 0
0 1 1 1

0 0 0 0 0 0 0 0

0 1 1 1
1 0 1 1

1 0 0 1 0 1 1 1

0 1 1 0
0 1 1 1

1 2 3 4 5 6 7 8

a)

b)

c)

d)

e)

f)

Maximum values

9 2 3 11 8 3 11 10

Fig. 15. Maximum �nding

In parallel for each element in the set, we point to the top-most bit and perform our
test. This is simply:

"Do you contain 1 at the current bit position?"
The processors with answer "NO" are removed from our set of possibilities (Fig. 15.c)

and are not subject to future testing. Then we consider the next bit position, and perform
the same operation upon the remaining elements in the set (Fig. 15.d). NOTE: If all
elements answer "NO", then no action will be taken, the algorithm continues to the next
step by setting up the new "current bit position".

This procedure continues until every bit position has been tested (Fig. 15.e). Of
course, the number of bits should be known from the beginning because one has only
limited space in the memory for storage of the tested numbers. The maximum element(s)
are the ones which answer "YES" to all test (except when all elements of the set contain
0, as it was noted above).

A similar algorithm can be used to �nd the minimal value.
It is also worth to remark that the speed of this algorithm doesn't depend on the

number of elements, but on the number of bit positions to be tested. So the process will
be performed just as quickly with a million elements as will with ten.

3.3 Tracking
Most of the time the particle physicists are dealing with particle trajectories, the so

called tracks. There are a number of tracking devices in use. One example for the output
of such detector was shown in Fig. 6.a. In general this is a 3-dimensional problem, but
most of the cases the pattern recognition is performed only in 2-dimensional projections
dictated by the detector architecture. For sake of simplicity here we restrict our task also
for that case. 3.3.1 JACK-POT algorithm: TRACK-CODE

So far we studied only such algorithms when the iconic mapping was realized by
packing only one item per processor. Sometimes this may not be optimal. The next
algorithm is a good example for the statement:

Correct mapping of the data provides already half of the solution.
Let us take multiwire proportional chambers (MWPC's) positioned at given z values,

which are measuring the x-coordinates of the tracks emerging from some interaction point
on the target plane. A typical arrangement is shown in Fig. 16. The vertex position (the
interaction point) can be anywhere in x with some probability on the z = zTARGET plane.

dx
dz slope=

projected

target plane

ZT

max

Z

X

φ

φ

Fig. 16.

The points crossed along the trajectory are described by two numbers: [plane num-
ber# i ; wire number# k] , when the k-th wire was hit in the i-th chamber at z =
zj. What is seen on the graphic image, it should be mapped on to the 2-dimensional

BIT-ARRAY

in a topologically faithful way. In the associative memory consecutive bits can be grouped

together in short strings called "serial �eld". Let us choose the length of this serial �eld
to be equal to the number of the MWPC planes, N. Thus one can de�ne the i-th bit of
the k-th processor and by simple, one is tempted to say automatic assignment one gets a
very natural mapping:

HIT [plane#i;wire#k] => BIT [processor#k;memoryposition#i]

This mapping requires as many processors k=1,2,..,M as many wires are read out
in the chambers. Please note the index reversal which implies the physical "crossing" of
chambers and processors, which is the essence of the algorithm illustrated by the mapping
procedure shown in Fig. 17. Due to this arrangement we can play for the JACK-POT.
The origin of this idea is the following: one can hit the JACK-POT on the "one-armed
bandit" slot machines if after spinning the wheels they stop by showing identical fruits.
In our scienti�c case we also have a JACK-POT track combination. If the track is parallel
with the z-axis, then in each MWPC plane the same wire k� will be hit. In this case the
content of the serial �eld containing the JACK-POT track will be 11...1, which could be
identi�ed by a simple content addressing. Thus due to the clever mapping one gets
without any programming all the tracks
ying out o� the target with angle � = 0.

CPU
MEMORY-WORD

COMPARATOR

BEAM

TRACK #2

TRACK #1

.

.

.

.

.

.

. . . .
W

IR
E

 #

PLANE # 1 2 3 4 5

APE-8

APE-7

APE-6

APE-5

APE-4

APE-3

APE-2

APE-1k-3

k-2

k-1

k

k+1

k+2

k+3

k+4

.

Fig. 17.

We are interested, however, not only in the existence of the track but its exact coordi-
nates too. Using our old trick of "pseudo - addressing" one can de�ne a second serial �eld
in the associative memory of each processor containing the wire number, which is known
by de�nition, just should be preloaded before the measurement. In this simple case, of
course, the k� wire number coincides with the serial number of the processor along the
string.

All these parallel JACK-POT tracks has a common feature. If one denotes in general
case the hit wire coordinates by W1, W2, ..., WN then one can calculate

C1 =W2 �W1;C2 = W3 �W2; :::;CN�1 = WN �WN�1:

Independently of W1 = k� one gets the vector

[C1; C2; :::; CN�1] = [0; 0; :::; 0]

for each JACK-POT tracks. This C vector is called TRACK-CODE which is characteristic
for all parallel tracks at a given � angle. Tracks with identical TRACK-CODE di�er only
in the W1 crossing coordinate in the MWPC plane# 1.

If one identi�es the bit-columns of the ASP with the spinning wheels of the "one-
armed-bandit", then by a lucky rotation one can reduce any TRACK-CODE to [0; 0; :::; 0].
Due to the fact that ASP is not a simple bandit, one doesn't need to trust in good luck,
but should commit a systematic premeditated crime. The number of reasonable TRACK-
CODES are limited and can be precalculated, then they can be (at least partially) ordered,
thus it is enough to spin the wheels mainly in one direction only. For instance TRACK#2
is transformed to JACK-POT position if one shifts the columns#3,#4,#5 by 1 step. After
hitting the JACK-POT the matching processor(s) give(s) the value of k� and remembering
the number of rotation "clicks" one can deduce the � angle too.

The execution time of this algorithm depends only on the allowed number of TRACK-
CODES which is de�ned by the physically predetermined � range. It is independent of
the number of tracks.

Just for summary it is worth to repeat the essence of the algorithm:

a) MAPPING di�erent MWPC's in the same processor;
b) SHIFTING instead of CALCULATIONS.

3.3.2 MASTER-POINT algorithm
Here we should like to demonstrate the elegant e�cacity of the iconic methods on an

other aspect of track reconstruction. In an ideal world one could use unlimited number
of MWPC planes in order to get maximal resolution. In practice, one should make a
compromise, arranging the limited number of planes (allowed by the budget) in so called
"super layer structure", containing a number of "stations" with closely packed subset of
chambers (Fig. 18.). The pattern recognition strategies relies on the fact that inside a
given station the change of the coordinate value is rather limited and the track pieces
are so linear that the hits belonging to a given particle are clustering around a central
coordinate value. Thus one can replace them by a single point the so called MASTER-
POINT.

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

#2 #3 #4STATION #1

Fig. 18. Super layer structure

The other advantage of the MASTER-POINT idea that it can help to cure the un-
avoidable detector de�ciencies like

a) ine�ciency which is the probability that there is no hit registered despite the
passage of the particle;
b) multiple hits can occur in the neighbouring wires despite the fact that only one
particle was passing by;

c) noise is generated at some level in any system, that is one gets hit without
particle.

OR

AND

OR

MASTER POINT

ε−ε

ε−ε

(ε(2−ε))

2

2 2

2

2

1

2

3

4

ε

ε

ε

ε

0.95
0.9
0.8

0.9975
0.99
0.96

0.995
0.98
0.9216

Fig. 19. Iconic average logics

Fig. 20. Master-point processing

For sake of de�niteness we assume that each super layer consists of 4 MWPC planes. In
this system the MASTER-POINTS are produced by the ICONICAVERAGE logics shown
in Fig. 19. The ine�ciencies are taken into account by smeared "OR"-ing layers (#1,#2)
and (#3,#4), respectively. The "AND"-ing of these smeared coordinates recenter the
cluster and after clipping the edges the cluster is reduced to a single hit in most of the
reasonable cases. This process is shown in Fig. 20. for tracks with positive inclination.
In case of negative inclination the smearing shifts are executed in opposite order.

Assuming hit detection e�ciency �x per plane, the MASTER-POINT detection e�-
ciency will be:

�MASTER = (�2x + 2�x(1� �x))
2

For �x = 0:9 (0:95) one gets �MASTER = 0:98 (0:95) . Due to the fact that valid
TRACK-CODE requires all the 4 MASTER-POINTS, the total track-�nding e�ciency
will be

�TRACK = �4MASTER = 0:92(0:98)

Thus the MASTER-POINTS are de�ned as "centers of gravity" by shifting (in order to
take into account the eventual xi jumps) and by bit-logics operations completely parallelly.
The execution is independent of the number of wires per plane and the number of particles
traversing the super layer.

3.3.3 Hough-transformation
Though the Hough-transformation was not invented for associative parallel processors

it can have very interesting realizations on this architecture. The essence of the method:
the track reconstruction is transformed to peak �nding, that is one should apply in the
�nal search a clustering algorithm instead of a tracking one.

A line (or in more general, a curve) in Cartesian coordinates is represented by a single
point in the so called "parameter space". If the points (xi; yi) belong to the line which
passes at a shortest distance d from the origin of the coordinate system and which has a
normal with an angle � relative to the positive x-axis then the value of the expression

xi � cos(�) + yi � sin(�)
is independent of i and always gives d (Fig. 21.). For the opposite case when (x; y) point
is not on this line the value will be di�erent. Thus calculating for each "black-pixel"
in the image for di�erent �1, �2, ..., �k, ... values the corresponding d1, d2, ..., dk, ...
and �lling a 2-dimensional (d; �) histogram, the lines from the original image will stick
out as peaks on this "lego-plot". The problem of LINE-SEARCH in the (x; y) plane
is transformed to PEAK-SEARCH on the (d; �) Hough-transform plane. This form of
Hough-transform is ideal for symbolic treatment in sequential machines or for data driven
pipelining processors.

x

y

d

Θ

Fig. 21. Hough-transform parameters

For the iconic approach, however, one should rephrase it in order to avoid the lengthy

oating point calculations and reach a form which conserves the topological relations
between the pixels.

To each (d; �) bin of the Hough-transform corresponds a corridor on the original image.
Fixing � but running d one gets parallel shifted copies of the starting corridor. Calculating
this "��column" of the Hough-transform is equivalent to counting the number of "black-
pixels" in each of these corridors. In the proposed ASP algorithm the trick is that one is
able to de�ne this corridors in a natural way on the original image itself.

The Single Angle Hough-transform (S A H) procedure is based on the idea of A.
Krikelis. In the "iconic" representation of the 2-dimensional image each PIXEL has its
own COMPUTER. Comparing to the previous more "economic" mapping in the MWPC
case, this is a rather "luxury" way of image data storage, but it pays o� in performance.
In case of 16k processors one can load into it s = 800 lines of a slice with n = 20
pixel width (or a square patch of 128 � 128). It should be remembered that ASP is a
STRING, thus pixel neighbours inside a given line are also neighbours in the ASP but
the column-neighbour of pixel [X = n;Y = k] is the pixel [X = 1;Y = k + 1].

For each "black-pixel" bit#1 is set to 1 in the associative memory. Counting the
number of "black-pixels" inside a given � corridor with intercept parameter bi is reduced
to a series of shift and add operations in the following way. One selects a "counter
processor" in each corridor which is the last processor on the string belonging to corridor
i. This Ci counters are pre
agged before execution and bits 17; 18; 19 are cleared. Then
one repeats the following cycle till the very �rst corridor point reaches the position where
originally the content of the last corridor pixel was, which contains counter Ci:

a) If bit#1 is set in the pre
agged counter processor: Ci = Ci + 1;
b) Shift one-by-one steps to right of all bit#1 until the next point in the corridor
reaches the original position of the last (the so called "storage-cell") point in the
corridor. The number of these steps depends only on � and it is a priori known in
the ASP controller.

By this way one �lls in the (b; �) plot for the whole column simultaneously as it shown
in Fig. 22. In this sense one can regard the SAH algorithm as "parallelism of the �rst
power".

Using the associative character of ASP one can create "parallelism of the second
power", too. Exactly this is done by the All Angle Simultaneous Hough-transform (A A
S H) algorithm. "All angle" means that one requires only 2 passes: the �rst for tracks
between angles �45�and +45�(y-slice scan) and the second for tracks between +45�and
+135�(x-slice scan). The number of �i values is determined by the number of columns, n
in the processed patch, because it is not worth to have di�erent corridors for tracks which
are starting from the same point of the �rst column and whose separation is less than 1
pixel in the last column.

Fig. 22. Single angle Hough-transform

Restricting the angular resolution to this self de�ning limit the number of necessary
"storage cells" is twice as many as the number of pixels per patch, thus assigning two
counters to each processor corresponding to positive and negative � corridors, respectively
one gets an ideal match between the size of the (d; �) "lego-plot" and the iconic image
size. In case of the CERN NA35 experiment on the streamer chamber pictures the choice
of n = 20 gives about 2:3�resolution. Fig. 23 shows four such consecutive slices creating
a super-slice which improves the angular resolution proportionally [6]. The tracks which
are reconstructed as peaks form the Hough-transform matrix are superimposed. It is
remarkable how well this procedure works in this very dense picture fragment.

Fig. 23. All angle Hough-transform

The AASH routine is both e�cient and very fast. The processing speed for a slice of
size s � n is independent of s, and the whole calculation requires only n � n right-shifts
and twice as many additions of log2(n) bits. In ASP the setting s = 800 and n = 20
requires Nslice = 4400 computational steps per slice, which corresponds to a processing
time Tslice = 440�s assuming 100 ns cycle time. For the whole 3 Megapixel image it would
take 180 millisecond. As the Hough-transform is done independently for single slices a
"parallelism of the third power" is also possible. If the length of the processor string is
large enough to load all slices at the same time, then the simultaneous slice processing
could bring down the processing time required for the whole image to the level of Tslice.
Of course, this time takes only into account the table �lling of the Hough-transform. The
peak �nding algorithm requires comparable time slot additionally.

3.4 Track-length method
When the particle is passing through any material then it is losing energy. If the

material is dense and/or long enough then it will stop. This range is rather well de�ned
and the track-length is well correlated with the original energy. Relying on the track-
length measurement a tracking device can behave like an energy measuring calorimeter.
Thus one can perform tracking and calorimetry simultaneously. In order to avoid to go
too deeply in technical details it is worth to formulate this problem in a more common-day
scenario.

Let us assume there are two lakes A and B, connected to each other by a channel.
The channel is crossed by a bridge where the anglers are sitting. In summer all the �shes
are living in lake A in complete harmony, but in autumn they migrate to lake B. During
this migration it is necessary to make a selection according to the �sh length because in
lake B the big �shes eat the small ones (and any way the big �shes have the ideal size
for human consumption). Net is not good, because the �shes are di�ering only in length
but not in lateral size. Anglers on the bridge should catch only �shes which are longer
than a minimal size independently of the swimming direction . In case of human
actors using the automatic pattern recognition built-in the eye this seems to be a minimal
requirement, but it is not so trivial if one tries to realize it in a fast on-line system.

Sense wires

Liquid - Argon

ν

drifts

Fig. 24. ICARUS detector

In the analog particle physics experiment (ICARUS) the water corresponds to liquid
Argon and the �shes are electron tracks generated by solar neutrino collisions (Fig. 24.),
which are drifting toward the detector plane representing the bridge with the anglers.
These electrons should have some minimal energy in order to be able to distinguish them
from the background noise caused mainly by 42Ar radioactive �� decays of smaller energy.

In the planned detector the number of sense wires will be about 20 000 with 2 mm
pitch. The signal will be read out every 1 �s (million times per second). This produces
2 � 1010 bit/sec information (20 Gigabit/sec!!). Of course, in most of the cases it is
empty, but one needs a fast on-line processor which is able to decide promptly when there
is something interesting.

The aim of the proposed algorithm is to provide in every �s a decision on that whether
between the present moment and 10 �s before was there a track which is at least 10 pixels
long. That is a sliding 10 �s test is performed in every microsecond.

In this case the "iconic" representation is understood only in "allegoric" sense, because
the processors will contain at a given moment only one time slice of the image drifting
through the detector, as it shown in Fig. 25. where the horizontal axis corresponds to
the usual processor string, but the vertical axis is the time axis, denoting the image lines
reaching the sensors 1,2,...,n,... microsec later.

C
O
U
N
T
E
R

0

1

2

3

4

5

6

7

8

9

10

C
O
U
N
T
E
R

0

1

2

3

4

5

6

7

8

9

10

APE string

"Horizontal " track "Vertical" track

X

X

X

X

X

X

X

X

X

X

Trigger

t=10

t=9

t=8

t=7

t=6

t=5

t=4

t=3

t=2

t=1

t=0

X

X

X

X

X

X

X

X

X

X

Threshold

Fig. 25. Horizontal and vertical tracking

The essence of the algorithm that it makes a tricky "convolution" by mixing the
previous state of the processor string and the new incoming image line. The basic
ow-
chart is shown in Fig. 26. It looks very simple because all the complications are hidden
in the fact that this is parallelly executed by 20 000 processors simultaneously.

START

TRIGGER

RESET: COUNTER=0

INCREMENT: COUNTER+1
KILL THE LEFTMOST APE

NO

YES

COUNTER

MIN. LENGTH

<

LOAD
Is there any APE

set to 1 ?

YES

NO

Fig. 26.

In every microsec there is a LOAD-ing which means that the image-bit in the memory

is set to 1 if it was 0, but the incoming 0 doesn't clears the bit if it was set to 1 previously.
Fig. 25 shows two typical tracks: the �rst is almost parallel to the sensor plane and most
hits are arriving within a short time range; the second track is almost vertical therefore
the hits are arriving one by one during 10 microsec. The real counting in pre
agged
processors is performed only for the leftmost hit in the loaded string. Only the counted
hit is set to zero leaving alive the "old" uncounted pixels, thus storing the information
from horizontal tracks for later counting.

Segmentation of 16 processor length is introduced along the string thus only the counts
from a small neighbourhood are taken into account. By "double" counting the algorithm
is working equally well for tracks crossing the segment boundary.

This storing, erasing and segmentation tactics assures that the track-length calculation
is not sensitive for the track direction. In case of a physically well applicable algorithm
one should provide some robustness against detector de�ciencies. The above algorithm
can tolerate "fat" tracks and it can survive small ine�ciency gap. It is not, however, a
real tracking algorithm because no check of smooth continuity is made. One can invent a
number of very arti�cial pixel distributions which would pass the test requested by this
routine, but these are so arti�cial that doesn't have practical signi�cance.

3.5 Cellular automata
Though it is only indirectly related to tracking and HEP, it is worth to mention how

good can be the ASP machine for cellular automata applications.
The cellular automata (CA) are automata networks, invented by J. Neumann to model

discrete dynamical systems. They can describe the complex, collective behaviour and time
evolution of systems of many degrees of freedom in physics, chemistry, biology or computer
science. Unlike ordinary di�erential equation description they can encounter "strange"
self-organizing systems. The CA, as shown by Wolfram, can be classi�ed according to
their evolution to:

class 1. simple homogeneous state;

class 2. periodic state;

class 3. chaotic state;

class 4. towards states with complex localized or propagating structures.
The �ne grain of parallelism, neighbour connectivity and the simple logical manip-

ulation capability of ASP makes it an ideal area for cellular automata simulation. By
assigning one processor/cell, maximal parallelization can be achieved for a CA with syn-
chronous rule.

To demonstrate this we programmed two recently investigated 1-dimensional CA
named Rule-18 and Rule-54. These are two-valued, range-one deterministic automata,
still showing complex collective behaviour. They belong to class 3.

RULE-18:

f18 = 1if(x1; x2; x3) = (1; 0; 0)or(0; 0; 1); 0 otherwise

RULE-54:

f54 = 1if(x1; x2; x3) = (1; 0; 0); (0; 0; 1); (0; 1; 0)or(1; 0; 1); 0 otherwise

Where x2 is the updated processor and x1, x3 are the left and right neighbours, respec-
tively. For the Rule-18 defects of the pattern show deterministic di�usion behaviour while
in Rule-54 di�erent particle-like structures appear, possessing complex interactions, as it
is shown in Fig. 27.

Fig. 27.

Using special parallel random generators in ASP one can study probabilistic CA too,
where the value is set only by probability P . It is easy to show that below about P = 0:8
the chaotic behaviour of Rule-18 disappears and the pattern dies out.

4. THE ASTRA MACHINE
Four ASTRA machines were produced within the CERN-MPPC project lead by F.

Rohrbach in Brunel, in Saclay, in Orsay and in CERN. These machines are development
systems therefore they look a bit more complicated than it is really required.

4.1 Hardware installation
The present systems are running with 2 ASPA cards providing 4096 processor chains.

Fig. 28 shows the logic scheme of the machine. By adding more ASPA processor cards
one can extend the system up to 16k processors.

The SUN workstation (used as human interface to the machine) which is called the
High-Level ASP Controller (HAC) drives the FIC (a commercial 68030 VME CPU board)
called the Intermediate-Level ASP Controller (IAC). The ASP machine itself is composed
of one Low-Level ASP Controller (LAC) card and a maximumof eight ASP Array (ASPA)
boards. On the LAC board the microcode memory stores the command sequence to
be executed by the ASP string. The ASPA cards comprise four ASP channels with
eight VASP-64 chips per channel, each chip contains 64 Associative Processing Elements
(APEs).

The backbone of the ASP machine is a proprietary bus, the ASP Global bus (AGbus).
The communication between the LAC and the ASP array is done by this AGbus on the
P3 connector of the extended VME card.

The scalar data are transmitted on 32 lines in the form of a 32-bit binary word or
in ternary mode in case of bytes or bits. The activity bits use 12 lines and are always
transmitted in ternary mode.

The instructions from the LAC are transferred over AGbus in a compressed form (20
bits). They are expanded inside the ASP boards. The AGbus also carries synchronization
signals and status (e.g. match). Four daisy-chains are used between boards in the AGbus
backplane to implement the inter-APE network.

V

B

V
M
Ee

r
f
a
c
e

S

I
n
t

 ASP channel

 ASP channel

 ASP channel

 ASP channel

V
M

E

V
S
B

I
n
t
e
r
f
a
c
e

I
n
t
e
r

A
P
E

n
e
t
w
o
r
k

SDX

Array

data

buffer

PDX

ASPA board

Procedure queue

LAC board

CPU control

Sequencer Microcode
memory

Scalar data
unit DMA

VME
CPU

68030

 Human
interface

SUN

AG bus

ASP
string

Data input

To other ASPA boards

Fig. 28.

4.2 Associative Processing Element (APE)
The basic building block of the system, the associative processing element (APE) is

shown in Fig. 29. which one can call also as "intelligent memory cell" at the same time
emphasizing its simplicity and expressing the intermediate evolutionary step toward real
intelligence in a bit similar way as the monkeys are regarded somewhere between human
and animal worlds.

APE
M D A

C
Adder
1 Bit

Data register

64 bits

Activity

6 bits

Comparator

o

r
e
l
l

c
o
n
t
r

Match replay line

Inter APE communication network

Data bus 32 bits

Acticity bus 12 bits

Control bus 32 bits

4 Flags

Activity
Carry
Match
Destination

Fig. 29.

The associative memory part comprises the Data Register (64 bits) and Activity bits
as 6 independent bit-registers. Both the Data and Activity bits can be content addressed
by help of the COMPARATOR through the overall Data and Activity buses. The Data
Register can be loaded from the Data bus, but Activity bits can be set only by internal
APE operations. The state of APE is determined by four
ags:

Activation
ag (don't mix with activity bits);
Carry
ag (stores the over
ow in single-bit addition);

Match
ag (Tagging register#1 = Tr1);

Destination
ag (Tagging register#2 = Tr2).
As a result of "associative (tagging) operations" when subset selection is performed a
universal MATCH-REPLY is worked out which represents the OR of all the M-
ags
along the string.

The inter-APE communication network is able to transmit 1-bit information to left or
right directions changing the setting of M,D and A
ags.

By software setting (i.e. by a single instruction) it is possible to rede�ne in any moment
the segment length. This provides a very
exible facility for programming because e.g. in
one moment of the program it can be regarded as a SINGLE STRING with 4096 APEs
and in the other moment as more than 500 INDEPENDENT 8-processors STRINGs.

4.3 Basic programming cycle
The big invention in ASP programming is that the operations are generally not exe-

cuted by the subset of those APEs which provided the positive MATCH-REPLY, though
this case is not excluded either. One should imagine what a powerful variable tool is
created by separating the matching step from the activation step. This is the rea-
son why are separate M,D tagging
ags and the A activation
ag. The large variety of
ACTIVATION MODES is illustrated in Fig. 30 by some examples.

All ACTIVATION MODE enumerations except a and am can be grouped into pairs.
Each enumeration in a pair has the same functionality but acts in opposite directions. All

those enumerations that can be grouped can contain either the letter "l" or the letter "r",
corresponding to the leftward and rightward directions in which they act. The following
is a list of the enumerations and their corresponding functionality:

a activate all APEs tagged in Tr1
am activate all APEs not tagged in Tr1

anl,anr activate the neighbours in the speci�ed direction to those APEs tagged
in Tr1

a
,afr activate the �rst APE tagged in Tr1 from the speci�ed direction

all,alr for every APE tagged in Tr1, activate the subsequent APE in the speci�ed
direction which is tagged in Tr2 (selective alternate tagging for Tr2 used for e.g. n
term summing in log2(n) steps)

ael,aer activate every APE in the speci�ed direction to those tagged in Tr1

aelf,aerf activate every APE in the speci�ed direction to those tagged in Tr1
including those tagged in Tr1

asl,asr activate all substrings of APEs in the speci�ed direction up to the subse-
quent processing element tagged in Tr2

aslf,asrf activate all substrings of APEs in the speci�ed direction and including
those tagged in Tr1 up to the subsequent processing element tagged in Tr2

TAG

ACTIVATE

TAG

ACTIVATE

TAG

ACTIVATE

TAG

ACTIVATE

TAG

ACTIVATE

TAG

ACTIVATE

M

A

M

A

M

A

M

A

M M M

A A A A A A A A AA A A

M

M M M

A

AAA

M

A

M

M

M M

MM M

MMD

D

D

D

A A

AAAAAAAAA

M M M M

A

all tagged

all not tagged

right neighbours

alternate M D to left

between M D to right

first right

Fig. 30.

The use of two types of tagging
ags (M = Tr1, D = Tr2) indicates that even the
tagging procedure is not as simple as it looks for the �rst glance. One has the possibility
to choose between three TAGMODES:

a) In tr1 mode all APEs with successful match will be tagged in Tr1;
b) In tr12 mode all matching APEs will be tagged in Tr1 AND Tr2;

c) In trAlt mode the matching APEs will be tagged alternatively starting by Tr2.
In summary the basic programming cycle in ASP consists of the following steps: tag-

ging, activation and execution. Of course, this is only the standard procedure, in real
applications there are more variants which are not discussed here because they are inter-
ested only for the specialists.

4.4 Operation types
Due to the fact that the data are stored in a number of di�erent positions one can

perform a large variety of operations in various scenarios. Here we mention some of them
only for illustration.

As it was mentioned above there is a very convenient data structure the "serial �eld"
grouping together any number of subsequent data bits inside the Data Register of each
APE. This entity corresponds to the commonly used "integer" data type in other program-
ming languages with the dynamical length and position de�nition which can be rede�ned
in any moment. At a given time three disjunct serial �elds (sf1; sf2; sf3) can exist si-
multaneously their partial or complete rede�nition is done without real loss of computing
time because one needs to set only some pointers in the LAC.

One basic type is the scalar-vector operation when each selected APE has its own
source information in one of its serial �elds which is modi�ed by a common number
broadcasted on the Data bus (Fig. 31.a).

3sfsf1

< constant, field > < field >

< field, field > < field >

< field > < field >

source destination

a)

source destination

BUS

APE

b)
APE

source1 source2 destination

sf

c)

sf1

 source destination

APE

BUS

APE FLAG

 source

f)

e)

APE FLAG

d)

source1 source2

APE FLAG

<, field, field > < selector >

< field > < selector >

< constant, field > < selector >

2

2sf

Fig. 31.

The other basic type is the vector-vector operation, when in each APE one can
calculate from two source �elds according to some rule (add, multiply, logical AND etc.)
a third one which is put into the destination �eld (Fig. 31.b). It can happen that only one
source is required like in case of copy (Fig. 31.c). It is also possible that one is interested
only in a single-bit MATCH-REPLY (e.g. mark the case when sf1 = sf2 (Fig. 31.d);

mark APEs which have greater number in sf1 than the one sent by the Data bus (Fig.
31.f); mark the APE with maximum (Fig. 31.e).

4.5 Programming environment
The target machine, as described in the previous sections, consists of several hardware

modules. An ASTRA application requests the programmer to support a software main
module for each hardware level of the machine: he/she has to write the HAC, IAC and
LAC modules de�ning the interfaces between each module. A number of facilities are
available in order to write this kind of three-level application.

The main idea is to program each layer using services provided by the lower layer.
That is, the HAC part will use the IAC procedures in remote to drive execution on
the IAC, and the IAC part will use the LAC procedures in remote to drive execution
on the LAC. The system so de�ned uses a Cross Procedure Call (or Remote Procedure
Call) mechanism for control and data communication between each hardware level. The
procedures de�ned in one module and called in one module of a di�erent level are called
cross-exported procedures. The way the cross procedure calls is completely transparent
to the application programmer.

The language used for writing an ASTRA application is Modula-2 with some restric-
tion for each level. Since the target machine consists of three di�erent hardware modules,
three di�erent commercial compilers are used to generate the corresponding target exe-
cutable code. The three compilers are:

gpm: Garden Points Modula-2 for Sun SPARCstation architecture;
ace: The ACE Cross Modula-2 Compiler for MOTOROLA 68030 architecture;

lamc: The ASPEX Microsystem Ltd. Cross Compiler for Low-Level ASP Con-
troller.

In order to simplify the task of the programmer, a multi-level compiler generator is
provided. The programmer has to write the de�nition and implementation modules for
each level. Those modules will be compiled using a program called "aspc" which drives the
execution of the right compiler according to the target level that the module represents.
Furthermore, the "aspc" compiler will generate the necessary code for implementing the
cross-exported procedures.

The compiled modules are linked to form a single application program ready to be
executed on the three-level hardware components of the machine. The linker program is
called "aspl" which links the modules taking into account the three di�erent hardware
targets.

Before the execution of the user code, the system checks the status of the ASTRA
machine. In particular, it initializes the di�erent hardware components and down-loads
the necessary codes to the IAC and LAC levels.

5. PERSPECTIVES
Associative processing involves a particularly
exible and naturally parallel form of

iconic representation and manipulation of structured data (viz. sets, arrays, tables, trees
and graphs) processing with potential bene�ts in simplicity of expression, storage capacity,
and speed of execution over a wide range of non-numerical and numerical information
processing applications.

The potential o�ered by the ASP architecture stems from the recognition that dynam-
ically recon�gurable heterogeneous low-MIMD/high-SIMD architectures could o�er the
most cost e�ective solution for second-generation massively parallel computers (MCPs).

Ideally, each processing node of such a heterogeneous MPC would comprise a medium-
grain microprocessor which would be tightly coupled to a �ne-grain SIMD processor. Each
node could execute a di�erent task, thereby achieving the maximum MIMD processing

power. However, in operation, virtual nodes comprising dynamically recon�gurable clus-
ters of physical nodes (each executing the same task) would be formed to match the
natural parallelism of the application.

MgD I

C I Cg

S S S S S SS

I I I I I II

D D D D D DD

M M M M M M M

D

M M M M M M MLL L L L L

C C C C C C CL L L L L L L

L

Fig. 32.

A simpli�ed schematic of a dynamically recon�gurable low-MIMD/high-SIMD second-
generation MPC that could be attached to an appropriate data source (via data interface
DI) and a host computer (via control interface CI) is shown in Fig. 32. In operation,
the global controller Cg could con�gure this heterogeneous MPC, either as purely SIMD
machine or as many low-MIMD/high-SIMD variants, by allocating local controllers Cl,
to the same or di�erent tasks. Communication between the SIMD processors could be
achieved via the shared memoryMg.

5.1 ASP modular systems
According to application requirement, an appropriate combination of ASP modules

would be attached to the control bus and the Data Communication Network as indicated
in Fig. 33. This could be constructed so as to implement any general purpose network
topology (e.g. cross-bar, mesh/torus or binary n-cube) or application speci�c topology (
e.g. shu�e, exchange or butter
y) to enable data transfer between pairs of selected ASP
modules.

Data Communications Network

M/C ASP ASP ASP ASP
module module modulemodule

D

 I

 C

 I

module module

Fig. 33.

The ASP module o�ering the highest performance parallel processing power with
largest data input-output bandwidth corresponds to the con�guration indicated in Fig.
34. This has a single CI and multiple DIs.

 D I D I D I

A A A

S S S

C I

P P P

 D I D I D I

A A A

S S S

C I

P P P

 D I D I D I

A A A

S S S

C I

P P P

C I

Fig. 34.

The basic structure of the architecture, the ASP substring is a programmable, homo-
geneous and fault-tolerant �ne-grain SIMD machine incorporating a string of identical
associative processing elements (APEs), a recon�gurable inter-processor network and a
Vector Data Bu�er (VDB) for overlapped data input-output, as indicated in Fig. 35.

APE APE APE APE APE APE

Scalar data and Control Interface

Inter - APE communication network

Vector data buffer

L
K
L

L
K
R

L
K
L

L
K
R

Fig. 35.

The network supports simple modular extension via the Link Left (LKL) and the Link
Right (LKR) ports enabling the user to simply extend the string length. The network
supports circuit-switched asynchronous communication, as well as more conventional syn-
chronous bidirectional multibit communication. At an abstract level, a circularly-linked
ASP substring can be considered as a hierarchical chordal-ring with the chords bypassing
APE blocks (and groups of APE blocks), thereby accelerating inter-APE communications
signals.

The upper levels of the input-output hierarchy consist of paging information between
external global memory (Mg) store and the local memories (Ml) as indicated in Fig. 32.
At the lowest level of the data bu�ering hierarchy, the Vector Data Bu�er (Fig. 35.)
supports a dual-port exchange of vector data with the APE data registers (primary data
exchange PDX) and with the local memories (Ml)(secondary data exchange SDX).

The bit-serial (APE-parallel) PDX is a very high bandwidth exchange. The lower
band-width bit-parallel (APE-sequential) SDX provides a slower data exchange between

the VDB and the Ml, but may be fully overlapped with parallel processing and so does
not necessarily present a sequential overhead.

The ASP concept has been speci�cally developed to exploit the opportunities presented
by the latest advances in the VLSI-to-WSI technological trend, high-density system as-
sembly techniques and state-of-the-art packaging technologies.

5.2 VLSI development program
The key processing component of an ASP is the ASP substring, shown in Fig. 35.

When implemented as a VLSI memory structure, this results in a very dense and regular
implementation. Following extensive research prototyping, a commercial 64-APE VLSI
ASP chip has been developed by Aspex Microsystems for fabrication (2�m CMOS with
2-layer metal) by ES2 (France). Incorporating 64-bit data registers and 6 activity bits,
the device is the �rst example of a family of devices intended to bene�t from rapid scaling
down to near 1�m feature sizes.

Current development systems support 16k APEs with a single controller, but facility
for simple expansion is readily available in keeping with the overall ASP strategy. Indeed,
ongoing research into hybrid technologies points towards multiple ASP devices (either
the current generation or next generation 256-APE chips) integrated on a single silicon
or ceramic substrate, thereby increasing the single-board substring to at least 16k APEs.
Performance values for 16k/64k APE boards, which can be envisaged as coprocessor
boards in standard workstations, are indicated in Table 3.

36/150 27/110 21/84Add/Subtract

4.9/20 2.4/9.6 1.5/5.9S-V Multiply

2.7/11 1.3/5.2 0.8/3.1V-V Multiply

8-bit [Giga-OPS] 12-bit [Giga-OPS] 16-bit [Giga-OPS]Fixed-point arithmetic

0.22/0.90 - 4.5/18 [Giga-OPS]Add/Subtract

0.86/3.5 [Giga-OPS]S-V Multiply

0.24/0.97 [Giga-OPS]V-V Multiply

Floating-point arithmetic (32-bit IEEE)

Table 3. Performance Values for 16K/64K boards at clock rate = 80 MHz

5.3 WSI associative string processor
The WSI Associative string processor (WASP) represents a challenging and innovative

method of implementing ASP modules by realizing ASP substring on a single undiced
quadrant of a silicon wafer.

As indicated in Fig. 36., a WASP device is composed from three di�erent modules
implementing Data Routers (DRs), ASP substrings, and Control Routers (CRs). The DR
and CR blocks incorporate routing to connect ASP substrings rows to a common DI and
common CI, respectively.

D I C I

LKL LKL

LKR LKR

WI/DR Faulty CR/WIASP

Fig. 36.

Each of the DR, ASP substring, and CR blocks integrates a defect/fault tolerant
design; such that APE blocks within the ASP substring blocks, and entire ASP substring
rows (and, hence, entire WASP devices) can be bypassed. In practice, WASP device form
factors depend on the packaging standard adopted. Of these standards a light-weight
SEM-E compatible module is assumed for the following projections. The SEM-E modules
are based on a 6.4 in * 5.88 in thermal conduction plate with a substrate, supporting micro-
electronic circuitry, attached to each side. Overall thickness of the package enclosure is
0.6 in. One such substrate supports four WASP devices, where a fully developed target
WASP device can comprise a 15360 APEs array in a 6 cm * 6 cm chip. Allowing for the
expected loss of processing elements through defects, a SEM-E compatible package can
therefore support a 65536-APE WSI ASP module with eight (32-bit) data channels. In a
longer term, 3D-WASP architectures can provide even more attractive performance (see
Fig. 37.).

6. CONCLUSIONS
I hope that the talk and demonstration was convincing enough to prove that the ASP

principle and the ASTRA machine works.
This machine is well adapted for bit (and integer number) manipulating ICONIC

algorithms which can be very e�ectively applied in a number of high energy physics
experiments.

The other advantage of this architecture that it could provide "unlimitedly" high I/O
band-width, which could be also very attractive for high luminosity HEP experiments,
but this "straight-forward" possibility was not yet realized in existing systems.

There has been developed very e�cient software tools, but more progress is required
both on the system - and the application software level.

In summary, on can say that ASP is not the best universal computer, but for a large
class of the problems it can provide probably the most optimal solution. In order to ful�ll
these promises one need cheap commercial components, modules and standard coprocessor
cards, which makes them easily available in case of eventual occurrence of demand.

In these sense Zanella's �nal words from his '92 talk seems to be still valid:

Massively "Parallel Computing is the technology of the future and always will be....
The future is getting closer....."

As a personal remark I should like to add:

There should be something in the idea of massive parallelism and associativity
because there exists at least one rather successful realization along these design
principles: the human brain.

Controller(s)

Controller HDI

DR HDI

Data Router

ASP wafer

Fig. 37.

REFERENCES

[1] P. Zanella:Status of Parallel Computing, Proceedings of 1992 CERN School of
Computing, L'Aquila, CERN 93-03, p.7.
[2] D. Parkinson:SIMD Processor Arrays, Proceedings of 1991 CERN School of
Computing, Ystad, CERN 92-02, p.204.

[3] R. Shepherd:Next Generation Transputers, Ystad, Proceedings of 1991 CERN
School of Computing, Ystad, CERN 92-02, p.299.

[4] B. Thooris et al.:ASTRA-2 tutorial, CERN/ECP, MPPC-94/.. and CERN-ASPA
User's Book, CERN/ECP/RA1, MPPC/93-96

[5] R. M. Lea:ASP, a cost-e�ective parallel microcomputer, IEEE Micro, Oct. 1981,
1.

[6] G. Vesztergombi:"Iconic" tracking algorithms for high energy physics using the
TRAX-1 massively parallel processor, in Proc. Conf. on Computing in High Energy
Physics, Oxford, 1989, Comput. Phys. Commun. 57 (1989) 296.

