21,007 research outputs found

    Multi-beam Energy Moments of Multibeam Particle Velocity Distributions

    Full text link
    High resolution electron and ion velocity distributions, f(v), which consist of N effectively disjoint beams, have been measured by NASA's Magnetospheric Multi-Scale Mission (MMS) observatories and in reconnection simulations. Commonly used standard velocity moments generally assume a single mean-flow-velocity for the entire distribution, which can lead to counterintuitive results for a multibeam f(v). An example is the (false) standard thermal energy moment of a pair of equal and opposite cold particle beams, which is nonzero even though each beam has zero thermal energy. By contrast, a multibeam moment of two or more beams has no false thermal energy. A multibeam moment is obtained by taking a standard moment of each beam and then summing over beams. In this paper we will generalize these notions, explore their consequences and apply them to an f(v) which is sum of tri-Maxwellians. Both standard and multibeam energy moments have coherent and incoherent forms. Examples of incoherent moments are the thermal energy density, the pressure and the thermal energy flux (enthalpy flux plus heat flux). Corresponding coherent moments are the bulk kinetic energy density, the RAM pressure and the bulk kinetic energy flux. The false part of an incoherent moment is defined as the difference between the standard incoherent moment and the corresponding multibeam moment. The sum of a pair of corresponding coherent and incoherent moments will be called the undecomposed moment. Undecomposed moments are independent of whether the sum is standard or multibeam and therefore have advantages when studying moments of measured f(v).Comment: 27 single-spaced pages. Three Figure

    A nonstationary generalization of the Kerr congruence

    Full text link
    Making use of the Kerr theorem for shear-free null congruences and of Newman's representation for a virtual charge ``moving'' in complex space-time, we obtain an axisymmetric time-dependent generalization of the Kerr congruence, with a singular ring uniformly contracting to a point and expanding then to infinity. Electromagnetic and complex eikonal field distributions are naturally associated with the obtained congruence, with electric charge being necesssarily unit (``elementary''). We conjecture that the corresponding solution to the Einstein-Maxwell equations could describe the process of continious transition of the naked ringlike singularitiy into a rotating black hole and vice versa, under a particular current radius of the singular ring.Comment: 6 pages, twocolum

    Volunteer studies replacing animal experiments in brain research - Report and recommendations of a Volunteers in Research and Testing workshop

    Get PDF

    Signatures of Secondary Collisionless Magnetic Reconnection Driven by Kink Instability of a Flux Rope

    Full text link
    The kinetic features of secondary magnetic reconnection in a single flux rope undergoing internal kink instability are studied by means of three-dimensional Particle-in-Cell simulations. Several signatures of secondary magnetic reconnection are identified in the plane perpendicular to the flux rope: a quadrupolar electron and ion density structure and a bipolar Hall magnetic field develop in proximity of the reconnection region. The most intense electric fields form perpendicularly to the local magnetic field, and a reconnection electric field is identified in the plane perpendicular to the flux rope. An electron current develops along the reconnection line in the opposite direction of the electron current supporting the flux rope magnetic field structure. Along the reconnection line, several bipolar structures of the electric field parallel to the magnetic field occur making the magnetic reconnection region turbulent. The reported signatures of secondary magnetic reconnection can help to localize magnetic reconnection events in space, astrophysical and fusion plasmas

    Graph Metrics for Temporal Networks

    Get PDF
    Temporal networks, i.e., networks in which the interactions among a set of elementary units change over time, can be modelled in terms of time-varying graphs, which are time-ordered sequences of graphs over a set of nodes. In such graphs, the concepts of node adjacency and reachability crucially depend on the exact temporal ordering of the links. Consequently, all the concepts and metrics proposed and used for the characterisation of static complex networks have to be redefined or appropriately extended to time-varying graphs, in order to take into account the effects of time ordering on causality. In this chapter we discuss how to represent temporal networks and we review the definitions of walks, paths, connectedness and connected components valid for graphs in which the links fluctuate over time. We then focus on temporal node-node distance, and we discuss how to characterise link persistence and the temporal small-world behaviour in this class of networks. Finally, we discuss the extension of classic centrality measures, including closeness, betweenness and spectral centrality, to the case of time-varying graphs, and we review the work on temporal motifs analysis and the definition of modularity for temporal graphs.Comment: 26 pages, 5 figures, Chapter in Temporal Networks (Petter Holme and Jari Saram\"aki editors). Springer. Berlin, Heidelberg 201

    Critical Behavior of an Ising System on the Sierpinski Carpet: A Short-Time Dynamics Study

    Full text link
    The short-time dynamic evolution of an Ising model embedded in an infinitely ramified fractal structure with noninteger Hausdorff dimension was studied using Monte Carlo simulations. Completely ordered and disordered spin configurations were used as initial states for the dynamic simulations. In both cases, the evolution of the physical observables follows a power-law behavior. Based on this fact, the complete set of critical exponents characteristic of a second-order phase transition was evaluated. Also, the dynamic exponent θ\theta of the critical initial increase in magnetization, as well as the critical temperature, were computed. The exponent θ\theta exhibits a weak dependence on the initial (small) magnetization. On the other hand, the dynamic exponent zz shows a systematic decrease when the segmentation step is increased, i.e., when the system size becomes larger. Our results suggest that the effective noninteger dimension for the second-order phase transition is noticeably smaller than the Hausdorff dimension. Even when the behavior of the magnetization (in the case of the ordered initial state) and the autocorrelation (in the case of the disordered initial state) with time are very well fitted by power laws, the precision of our simulations allows us to detect the presence of a soft oscillation of the same type in both magnitudes that we attribute to the topological details of the generating cell at any scale.Comment: 10 figures, 4 tables and 14 page

    Topological Effects caused by the Fractal Substrate on the Nonequilibrium Critical Behavior of the Ising Magnet

    Full text link
    The nonequilibrium critical dynamics of the Ising magnet on a fractal substrate, namely the Sierpinski carpet with Hausdorff dimension dHd_H =1.7925, has been studied within the short-time regime by means of Monte Carlo simulations. The evolution of the physical observables was followed at criticality, after both annealing ordered spin configurations (ground state) and quenching disordered initial configurations (high temperature state), for three segmentation steps of the fractal. The topological effects become evident from the emergence of a logarithmic periodic oscillation superimposed to a power law in the decay of the magnetization and its logarithmic derivative and also from the dependence of the critical exponents on the segmentation step. These oscillations are discussed in the framework of the discrete scale invariance of the substrate and carefully characterized in order to determine the critical temperature of the second-order phase transition and the critical exponents corresponding to the short-time regime. The exponent θ\theta of the initial increase in the magnetization was also obtained and the results suggest that it would be almost independent of the fractal dimension of the susbstrate, provided that dHd_H is close enough to d=2.Comment: 9 figures, 3 tables, 10 page

    Observations on computational methodologies for use in large-scale, gradient-based, multidisciplinary design incorporating advanced CFD codes

    Get PDF
    How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way
    • …
    corecore