21 research outputs found

    Smooth muscle specific Rac1 deficiency induces hypertension by preventing p116RIP3-dependent RhoA inhibition

    Get PDF
    BACKGROUND: Increasing evidence implicates overactivation of RhoA as a critical component of the pathogenesis of hypertension. Although a substantial body of work has established that Rac1 functions antagonize RhoA in a broad range of physiological processes, the role of Rac1 in the regulation of vascular tone and blood pressure is not fully elucidated. METHODS AND RESULTS: To define the role of Rac1 in vivo in vascular smooth muscle cells (vSMC), we generated smooth muscle (SM)-specific Rac1 knockout mice (SM-Rac1-KO) and performed radiotelemetric blood pressure recordings, contraction measurements in arterial rings, vSMC cultures and biochemical analyses. SM-Rac1-KO mice develop high systolic blood pressure sensitive to Rho kinase inhibition by fasudil. Arteries from SM-Rac1-KO mice are characterized by a defective NO-dependent vasodilation and an overactivation of RhoA/Rho kinase signaling. We provide evidence that Rac1 deletion-induced hypertension is due to an alteration of cGMP signaling resulting from the loss of Rac1-mediated control of type 5 PDE activity. Consequently, cGMP-dependent phosphorylation and binding of RhoA with its inhibitory partner, the phosphatase-RhoA interacting protein (p116(RIP3)), are decreased. CONCLUSIONS: Our data reveal that the depletion of Rac1 in SMC decreases cGMP-dependent p116(RIP3)/RhoA interaction and the subsequent inhibition of RhoA signaling. Thus, we unveil an in vivo role of Rac1 in arterial blood pressure regulation and a new pathway involving p116(RIP3) that contributes to the antagonistic relationship between Rac1 and RhoA in vascular smooth muscle cells and their opposite roles in arterial tone and blood pressure

    Effects of long-term active immunization with the second extracellular loop of human β1- or β3-adrenoceptors in thoracic aorta and mesenteric arteries in Lewis rats

    Get PDF
    Objective To evaluate whether active immunization producing β1- or β3-antibodies (β1-ABs and β3-ABs) detected in sera of patients with dilated cardiomyopathies has deleterious effects on vascular reactivity in Lewis rat thoracic aorta (TA) and small mesenteric arteries (SMA). Design and method Lewis rats were immunized for 6 months with peptidic sequences corresponding to the second extracellular loop of β1- and β3-adrenoceptors (ARs). During the immunization, systolic blood pressure (SBP) was monitored using the tail cuff method. The vascular reactivity of immunized rats was assessed by ex vivo studies on SMA and TA using various β-AR agonists, phenylephrine and KCl. Results The immunizations producing functional β1-ABs and β3-ABs did not affect the SBP. However, in TA from β1-AR-immunized rats, the relaxations mediated by dobutamine and salbutamol were significantly impaired in comparison with adjuvant rats whereas nebivolol-induced relaxation was not modified. Moreover, phenylephrine and KCl-mediated contractions were enhanced in these rats. In contrast, immunization with β3-AR peptide led to the increase of relaxations induced by dobutamine in TA but did not change those induced by salbutamol and nebivolol. Surprisingly, in SMA from both rats immunized with β1- or β3-peptides, relaxations induced by the various β-agonists were not changed whereas phenylephrine and KCl-mediated contractions were impaired. Conclusions Our study shows that β1- and β3-ABs can affect vascular reactivity. β1-ABs would have a pathogenic action whereas β3-ABs would have a beneficial effect on aorta reactivity. Array ( [0] => public://js/js_NhB8QqEMkIRnGegV_fyHSoTNS4QcuYAxmtYDZC610gE.js.gz : fichier présent sur le disque mais absent dans la base de données [1] => public://js/js_YqvqIXMHR_JA_6L7V5VgwgrhCDVtmWC_wCWsaINFQtk.js : fichier présent sur le disque mais absent dans la base de données [2] => public://js/js_YqvqIXMHR_JA_6L7V5VgwgrhCDVtmWC_wCWsaINFQtk.js.gz : fichier présent sur le disque mais absent dans la base de données [3] => public://js/js_NhB8QqEMkIRnGegV_fyHSoTNS4QcuYAxmtYDZC610gE.js : fichier présent sur le disque mais absent dans la base de données

    The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure

    Get PDF
    Hypertension is one of the most frequent pathologies in the industrialized world. Although recognized to be dependent on a combination of genetic and environmental factors, its molecular basis remains elusive. Increased activity of the monomeric G protein RhoA in arteries is a common feature of hypertension. However, how RhoA is activated and whether it has a causative role in hypertension remains unclear. Here we provide evidence that Arhgef1 is the RhoA guanine exchange factor specifically responsible for angiotensin II-induced activation of RhoA signaling in arterial smooth muscle cells. We found that angiotensin II activates Arhgef1 through a previously undescribed mechanism in which Jak2 phosphorylates Tyr738 of Arhgef1. Arhgef1 inactivation in smooth muscle induced resistance to angiotensin II-dependent hypertension in mice, but did not affect normal blood pressure regulation. Our results show that control of RhoA signaling through Arhgef1 is central to the development of angiotensin II-dependent hypertension and identify Arhgef1 as a potential target for the treatment of hypertension

    Physiologic and molecular consequences of endothelial Bmpr2 mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary arterial hypertension (PAH) is thought to be driven by dysfunction of pulmonary vascular microendothelial cells (PMVEC). Most hereditary PAH is associated with BMPR2 mutations. However, the physiologic and molecular consequences of expression of BMPR2 mutations in PMVEC are unknown.</p> <p>Methods</p> <p>In vivo experiments were performed on adult mice with conditional endothelial-specific expression of the truncation mutation Bmpr2<sup>delx4+</sup>, with age-matched transactivator-only mice as controls. Phenotype was assessed by RVSP, counts of muscularized vessels and proliferating cells, and staining for thromboses, inflammatory cells, and apoptotic cells. The effects of BMPR2 knockdown in PMVEC by siRNA on rates of apoptosis were assessed. Affymetrix expression arrays were performed on PMVEC isolated and cultured from triple transgenic mice carrying the immortomouse gene, a transactivator, and either control, Bmpr2<sup>delx4+ </sup>or Bmpr2<sup>R899X </sup>mutation.</p> <p>Results</p> <p>Transgenic mice showed increased RVSP and corresponding muscularization of small vessels, with histologic alterations including thrombosis, increased inflammatory cells, increased proliferating cells, and a moderate increase in apoptotic cells. Expression arrays showed alterations in specific pathways consistent with the histologic changes. Bmpr2<sup>delx4+ </sup>and Bmpr2<sup>R899X </sup>mutations resulted in very similar alterations in proliferation, apoptosis, metabolism, and adhesion; Bmpr2<sup>delx4+ </sup>cells showed upregulation of platelet adhesion genes and cytokines not seen in Bmpr2<sup>R899X </sup>PMVEC. Bmpr2 mutation in PMVEC does not cause a loss of differentiation markers as was seen with Bmpr2 mutation in smooth muscle cells.</p> <p>Conclusions</p> <p>Bmpr2 mutation in PMVEC <it>in vivo </it>may drive PAH through multiple, potentially independent, downstream mechanisms, including proliferation, apoptosis, inflammation, and thrombosis.</p

    Signaling Mechanisms of Vav3, a Guanine Nucleotide Exchange Factor and Androgen Receptor Coactivator, in Physiology and Prostate Cancer Progression

    Get PDF
    The Rho GTPase guanine nucleotide exchange factor (GEF) Vav3 is the third member of the Vavfamily of GEFS and is activated by tyrosine phosphorylation. Through stimulation of Rho GTPaseactivity, Vav3 promotes cell migration, invasion, and other cellular processes. Work from our laboratory first established that Vav3 is upregulated in models of castration-resistant prostate cancer progression and enhances androgen receptor as well as androgen receptor splice variant activity. Recent analysis of clinical specimens supports Vav3 as a potential biomarker of aggressive prostate cancer. Consistent with a role in promoting castration-­resistant disease, Vav3 is a versatile enhancer of androgen receptor by both ligand-dependent and ligand-independent mechanisms and as such impacts established pathways of androgen receptor reactivation in advanced prostate cancer. Distinct Vav3 domains and mechanisms participate in ligand-dependent and -independent androgen receptor coactivation. To provide a physiologic context, we review Vav3 actions elucidated by gene knockout studies. This chapter describes the pervasive role of Vav3 in progression of prostate cancer to castration resistance. We discuss the mechanisms by which prostate cancer cells exploit Vav3 signaling to promote androgen receptor activity under different hormonal milieus, which are relevant to clinical prostate cancer. Lastly, we review the data on the emerging role for Vav3 in other cancers ranging from leukemias to gliomas.https://nsuworks.nova.edu/hpd_medsci_faculty_books/1002/thumbnail.jp

    P2 receptors in atherosclerosis and postangioplasty restenosis

    Get PDF
    Atherosclerosis is an immunoinflammatory process that involves complex interactions between the vessel wall and blood components and is thought to be initiated by endothelial dysfunction [Ross (Nature 362:801–09, 1993); Fuster et al. (N Engl J Med 326:242–50, 1992); Davies and Woolf (Br Heart J 69:S3–S11, 1993)]. Extracellular nucleotides that are released from a variety of arterial and blood cells [Di Virgilio and Solini (Br J Pharmacol 135:831–42, 2002)] can bind to P2 receptors and modulate proliferation and migration of smooth muscle cells (SMC), which are known to be involved in intimal hyperplasia that accompanies atherosclerosis and postangioplasty restenosis [Lafont et al. (Circ Res 76:996–002, 1995)]. In addition, P2 receptors mediate many other functions including platelet aggregation, leukocyte adherence, and arterial vasomotricity. A direct pathological role of P2 receptors is reinforced by recent evidence showing that upregulation and activation of P2Y2 receptors in rabbit arteries mediates intimal hyperplasia [Seye et al. (Circulation 106:2720–726, 2002)]. In addition, upregulation of functional P2Y receptors also has been demonstrated in the basilar artery of the rat double-hemorrhage model [Carpenter et al. (Stroke 32:516–22, 2001)] and in coronary artery of diabetic dyslipidemic pigs [Hill et al. (J Vasc Res 38:432–43, 2001)]. It has been proposed that upregulation of P2Y receptors may be a potential diagnostic indicator for the early stages of atherosclerosis [Elmaleh et al. (Proc Natl Acad Sci U S A 95:691–95, 1998)]. Therefore, particular effort must be made to understand the consequences of nucleotide release from cells in the cardiovascular system and the subsequent effects of P2 nucleotide receptor activation in blood vessels, which may reveal novel therapeutic strategies for atherosclerosis and restenosis after angioplasty

    Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension

    Get PDF
    International audienceEthnopharmacological relevance: Different parts of Mimosa pigra (MPG) are used in traditional medicine in Madagascar, tropical Africa, South America and Indonesia for various troubles including cardiovascular disorders.Aim of the study: To investigate the mechanisms underlying the vascular effects of MPG by assessing in vitro its antioxidant and anti-inflammatory properties, and its vascular relaxing effects, and in vivo, its action on hypoxic pulmonary hypertension (PAH) in rats.Material and methods: The antioxidant activity of MPG leaf hydromethanolic extract was determined by using both the 1,1-diphenyl-2-picrylhydrazyl radical scavenging and the oxygen radical absorbance capacity in vitro assays. Anti-inflammatory properties were assayed on TNFα-induced VCAM-1 expression in endothelial cells. The vasorelaxant effect of MPG extract was studied on rat arterial rings pre-contracted with phenylephrine (1 μM) in the presence or absence of the endothelium. In vivo MPG extract effects were analyzed in chronic hypoxic PAH, obtained by housing male Wistar rats, orally treated or not with MPG extract (400 mg/kg/d), in a hypobaric chamber for 21 days.Results: MPG leaf extract had antioxidant and anti-inflammatory properties. It induced endothelium-dependent, NO-mediated relaxation of rat aorta and pulmonary artery. In vivo, chronic MPG treatment reduced hypoxic PAH in rat by decreasing by 22.3% the pulmonary arterial pressure and by 20.0% and 23.9% the pulmonary artery and cardiac remodelling, respectively. This effect was associated with a restoration of endothelium function and a 2.3-fold increase in endothelial NO synthase phosphorylation. MPG leaf hydromethanolic extract contained tryptophan and flavonoids, including quercetin glycosides. Both compounds also efficiently limit hypoxia-induced PAH.Conclusions: Our results show endothelial protective action of MPG leaf hydromethanolic extract which is likely to be due to its antioxidant action. MPG successfully attenuated the development of PAH, thus demonstrating the protective effect of MPG on cardiovascular diseases
    corecore