2,691 research outputs found

    On Black Holes in Massive Gravity

    Full text link
    In massive gravity the so-far-found black hole solutions on Minkowski space happen to convert horizons into a certain type of singularities. Here we explore whether these singularities can be avoided if space-time is not asymptotically Minkowskian. We find an exact analytic black hole (BH) solution which evades the above problem by a transition at large scales to self-induced de Sitter (dS) space-time, with the curvature scale set by the graviton mass. This solution is similar to the ones discovered by Koyama, Niz and Tasinato, and by Nieuwenhuizen, but differs in detail. The solution demonstrates that in massive GR, in the Schwarzschild coordinate system, a BH metric has to be accompanied by the St\"uckelberg fields with nontrivial backgrounds to prevent the horizons to convert into the singularities. We also find an analogous solution for a Reissner-Nordstr\"om BH on dS space. A limitation of our approach, is that we find the solutions only for specific values of the two free parameters of the theory, for which both the vector and scalar fluctuations loose their kinetic terms, however, we hope our solutions represent a broader class with better behaved perturbations.Comment: 17 LateX page

    Sexual dimorphism in bite performance drives morphological variation in chameleons

    Get PDF
    Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal's foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal's performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open-or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance

    Viscoelastic properties of elastomeric impression materials: polysulphide, silicone and polyether rubbers

    Full text link
    Creep compliance measurements were shown to be effective in characterizing the elastic, retarded elastic, and viscous properties of polysulphide, silicone, and polyether impression materials. The test is particularly valuable in that the creep compliance was independent of load, allowing the mechanical properties to be represented by a single total creep compliance curve which can be used to determine the various creep components. The total recovered compliance was shown to be independent of time provided the polymerization had progressed sufficiently before testing was done. The retarded elastic and viscous compliances contributed proportionally to the total creep compliance and thus did not affect the rankings of materials. The viscous compliance of polysulphide A decreased enough after 1 h so that the creep compliance of A and D were not different. The creep compliance measurements showed that the polysulphide materials were the most viscoelastic followed by silicone and polyether impression materials. The polyether was the most nearly ideal elastic material but it had a flexibility comparable to heavy body polysulphide. Of particular interest was the observation that polyether with thinner in ratios up to 1 : 1 by length had no practical effect on the viscoelastic properties.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73863/1/j.1365-2842.1978.tb01204.x.pd

    Sequential Fragmentation of Pleistocene Forests in an East Africa Biodiversity Hotspot: Chameleons as a Model to Track Forest History

    Get PDF
    CITATION: Measey, G. J. & Tolley, K. A. 2011. Sequential fragmentation of Pleistocene forests in an East Africa biodiversity hotspot : chameleons as a model to track forest history. PLoS ONE, 6(10): e26606, doi:10.1371/journal.pone.0026606.The original publication is available at http://journals.plos.org/plosoneBackground The Eastern Arc Mountains (EAM) is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei. Methodology/Principal Findings We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93–0.59 Ma (95% HPD 0.22–1.84 Ma). In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka. Conclusions/Significance Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1.1–0.9 Ma.http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0026606Publisher's versio
    • …
    corecore