734 research outputs found

    Information based clustering

    Full text link
    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here we reformulate the clustering problem from an information theoretic perspective which avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster "prototype", does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures non-linear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures.Comment: To appear in Proceedings of the National Academy of Sciences USA, 11 pages, 9 figure

    On the criticality of inferred models

    Full text link
    Advanced inference techniques allow one to reconstruct the pattern of interaction from high dimensional data sets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to a phase transition. On one side, we show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher Information) is directly related to the model's susceptibility. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. On the other, this region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time-scales naturally yield models which are close to criticality.Comment: 6 pages, 2 figures, version to appear in JSTA

    Information flow and optimization in transcriptional control

    Full text link
    In the simplest view of transcriptional regulation, the expression of a gene is turned on or off by changes in the concentration of a transcription factor (TF). We use recent data on noise levels in gene expression to show that it should be possible to transmit much more than just one regulatory bit. Realizing this optimal information capacity would require that the dynamic range of TF concentrations used by the cell, the input/output relation of the regulatory module, and the noise levels of binding and transcription satisfy certain matching relations. This parameter-free prediction is in good agreement with recent experiments on the Bicoid/Hunchback system in the early Drosophila embryo, and this system achieves ~90% of its theoretical maximum information transmission.Comment: 5 pages, 4 figure

    Transformation of stimulus correlations by the retina

    Get PDF
    Redundancies and correlations in the responses of sensory neurons seem to waste neural resources but can carry cues about structured stimuli and may help the brain to correct for response errors. To assess how the retina negotiates this tradeoff, we measured simultaneous responses from populations of ganglion cells presented with natural and artificial stimuli that varied greatly in correlation structure. We found that pairwise correlations in the retinal output remained similar across stimuli with widely different spatio-temporal correlations including white noise and natural movies. Meanwhile, purely spatial correlations tended to increase correlations in the retinal response. Responding to more correlated stimuli, ganglion cells had faster temporal kernels and tended to have stronger surrounds. These properties of individual cells, along with gain changes that opposed changes in effective contrast at the ganglion cell input, largely explained the similarity of pairwise correlations across stimuli where receptive field measurements were possible.Comment: author list corrected in metadat

    The Effect of Nonstationarity on Models Inferred from Neural Data

    Full text link
    Neurons subject to a common non-stationary input may exhibit a correlated firing behavior. Correlations in the statistics of neural spike trains also arise as the effect of interaction between neurons. Here we show that these two situations can be distinguished, with machine learning techniques, provided the data are rich enough. In order to do this, we study the problem of inferring a kinetic Ising model, stationary or nonstationary, from the available data. We apply the inference procedure to two data sets: one from salamander retinal ganglion cells and the other from a realistic computational cortical network model. We show that many aspects of the concerted activity of the salamander retinal neurons can be traced simply to the external input. A model of non-interacting neurons subject to a non-stationary external field outperforms a model with stationary input with couplings between neurons, even accounting for the differences in the number of model parameters. When couplings are added to the non-stationary model, for the retinal data, little is gained: the inferred couplings are generally not significant. Likewise, the distribution of the sizes of sets of neurons that spike simultaneously and the frequency of spike patterns as function of their rank (Zipf plots) are well-explained by an independent-neuron model with time-dependent external input, and adding connections to such a model does not offer significant improvement. For the cortical model data, robust couplings, well correlated with the real connections, can be inferred using the non-stationary model. Adding connections to this model slightly improves the agreement with the data for the probability of synchronous spikes but hardly affects the Zipf plot.Comment: version in press in J Stat Mec

    Intrinsic limitations of inverse inference in the pairwise Ising spin glass

    Full text link
    We analyze the limits inherent to the inverse reconstruction of a pairwise Ising spin glass based on susceptibility propagation. We establish the conditions under which the susceptibility propagation algorithm is able to reconstruct the characteristics of the network given first- and second-order local observables, evaluate eventual errors due to various types of noise in the originally observed data, and discuss the scaling of the problem with the number of degrees of freedom
    • …
    corecore