24 research outputs found
Microscopic description of the pygmy and giant electric dipole resonances in stable Ca isotopes
The properties of the pygmy (PDR) and giant dipole resonance (GDR)in the
stable , and isotopes have been calculated within
the \emph{Extended Theory of Finite Fermi Systems}(ETFFS). This approach is
based on the random phase approximation (RPA) and includes the single particle
continuum as well as the coupling to low-lying collectives states which are
considered in a consistent microscopic way. For we also include
pairing correlations. We obtain good agreement with the experimental data for
the gross properties of both resonances. It is demonstrated that the recently
measured A-dependence of the strength of the PDR below 10 MeV is well
understood in our model:due to the phonon coupling some of the strength in
is simply shifted beyond 10 MeV. The predicted fragmentation of the
PDR can be investigated in and experiments.
Whereas the isovector dipole strength of the PDR is small in all Ca isotopes,
we find in this region surprisingly strong isoscalar dipole states, in
agreement with an experiment. We conclude that for the
detailed understanding of the structure of excited nuclei e.g. the PDR and GDR
an approach like the present one is absolutely necessary.Comment: 6 figure
Підвищення чутливості та завадостійкості систем цифрового зв’язку
Enhancement of sensitivity and noise immunity of digital communication systems with achievement device are considered. Description, modeling and experiment results are reduced.Рассмотрены способ повышения чувствительности и помехоустойчивости систем цифровой связи, а также устройство для его реализации. Приведены описание, результаты моделирования и эксперимента.Розглянуто засіб підвищення чутливості і завадостійкості систем цифрового зв’язку та пристрій для його реалізації. Наведені результати моделювання та експерименту
Extended Theory of Finite Fermi Systems: Application to the collective and non-collective E1 strength in Pb
The Extended Theory of Finite Fermi Systems is based on the conventional
Landau-Migdal theory and includes the coupling to the low-lying phonons in a
consistent way. The phonons give rise to a fragmentation of the single-particle
strength and to a compression of the single-particle spectrum. Both effects are
crucial for a quantitative understanding of nuclear structure properties. We
demonstrate the effects on the electric dipole states in Pb (which
possesses 50% more neutrons then protons) where we calculated the low-lying
non-collective spectrum as well as the high-lying collective resonances. Below
8 MeV, where one expects the so called isovector pygmy resonances, we also find
a strong admixture of isoscalar strength that comes from the coupling to the
high-lying isoscalar electric dipole resonance, which we obtain at about 22
MeV. The transition density of this resonance is very similar to the breathing
mode, which we also calculated. We shall show that the extended theory is the
correct approach for self-consistent calculations, where one starts with
effective Lagrangians and effective Hamiltonians, respectively, if one wishes
to describe simultaneously collective and non-collective properties of the
nuclear spectrum. In all cases for which experimental data exist the agreement
with the present theory results is good.Comment: 21 figures corrected typos in author fiel
M1 Resonances in Unstable Magic Nuclei
Within a microscopic approach which takes into account RPA configurations,
the single-particle continuum and more complex
configurations isoscalar and isovector M1 excitations for the unstable nuclei
Ni and Sn are calculated. For comparison, the
experimentally known M1 excitations in Ca and Pb have also been
calculated. In the latter nuclei good agreement in the centroid energy, the
total transition strength and the resonance width is obtained. With the same
parameters we predict the magnetic excitations for the unstable nuclei. The
strength is sufficiently concentrated to be measurable in radioactive beam
experiments. New features are found for the very neutron rich nucleus Ni
and the neutron deficient nucleus Sn.Comment: 17 pages (LATEX), 12 figures (available from the authors),
KFA-IKP(TH)-1993-0
Isoscalar dipole coherence at low energies and forbidden E1 strength
In 16O and 40Ca an isoscalar, low-energy dipole transition (IS-LED)
exhausting approximately 4% of the isoscalar dipole (ISD) energy-weighted sum
rule is experimentally known, but conspicuously absent from recent theoretical
investigations of ISD strength. The IS-LED mode coincides with the so-called
isospin-forbidden E1 transition. We report that for N=Z nuclei up to 100Sn the
fully self-consistent Random-Phase-Approximation with finite-range forces,
phenomenological and realistic, yields a collective IS-LED mode, typically
overestimating its excitation energy, but correctly describing its IS strength
and electroexcitation form factor. The presence of E1 strength is solely due to
the Coulomb interaction between the protons and the resulting isospin-symmetry
breaking. The smallness of its value is related to the form of the transition
density, due to translational invariance. The calculated values of E1 and ISD
strength carried by the IS-LED depend on the effective interaction used.
Attention is drawn to the possibility that in N-not-equal-Z nuclei this
distinct mode of IS surface vibration can develop as such or mix strongly with
skin modes and thus influence the pygmy dipole strength as well as the ISD
strength function. In general, theoretical models currently in use may be unfit
to predict its precise position and strength, if at all its existence.Comment: 9 pages, 6 figures, EPJA submitte
Extended theory of finite Fermi systems: collective vibrations in closed shell nuclei
We review an extension of Migdal's Theory of Finite Fermi Systems which has been developed and applied to collective vibrations in closed shell nuclei in the past ten years. This microscopic approach is based on a consistent use of the Green function method. Here one considers in a consistent way more complex 1p1hphonon configurations beyond the RPA correlations. Moreover, these configurations are not only included in the excited states but also explicitly in the ground states of nuclei. The method has been applied to the calculation of the strength distribution and transition densities of giant electric and magnetic resonances in stable and unstable magic nuclei. Using these microscopic transition densities, cross sections for inelastic electron and alpha scattering have been calculated and compared with the available experimental data. The method also allows one to extract in a consistent way the magnitude of the strength of the various multipoles in the energy regions in which several multipoles overlap. We compare the microscopic transition densities, the strength distributions and the various multipole strengths with their values extracted phenomenologically
Compensation of flicker noise in weak-signal amplifiers
The paper considers the block diagram of a weak-signal low-frequency amplifier, describes its principle of operation, and presents results of the theoretical and experimental investigation in compensation of flicker noise in the new device