21,347 research outputs found
Linear Invariant Systems Theory for Signal Enhancement
This paper discusses a linear time invariant (LTI) systems approach to signal enhancement via projective subspace techniques. It provides closed form expressions for the frequency response of data adaptive finite impulse response eigenfilters. An illustrative example using speech enhancement is also presented.Este artigo apresenta a aplicação da teoria de sistemas lineares invariantes no tempo (LTI) na anĂĄlise de tĂ©cnicas de sub-espaço. A resposta em frequĂȘncia dos filtros resultantes da decomposição em valores singulares Ă© obtida aplicando as propriedades dos sistemas LTI
Upper limit on mh in the MSSM and M-SUGRA vs. prospective reach of LEP
The upper limit on the lightest CP-even Higgs boson mass, mh, is analyzed
within the MSSM as a function of tan(beta) for fixed mtop and Msusy. The impact
of recent diagrammatic two-loop results on this limit is investigated. We
compare the MSSM theoretical upper bound on mh with the lower bound obtained
from experimental searches at LEP. We estimate that with the LEP data taken
until the end of 1999, the region mh < 108.2 GeV can be excluded at the 95%
confidence level. This corresponds to an excluded region 0.6 <= tan(beta) <=
1.9 within the MSSM for mtop = 174.3 GeV and Msusy <= 1 TeV. The final
exclusion sensitivity after the end of LEP, in the year 2000, is also briefly
discussed. Finally, we determine the upper limit on mh within the Minimal
Supergravity (M-SUGRA) scenario up to the two-loop level, consistent with
radiative electroweak symmetry breaking. We find an upper bound of mh \approx
127 GeV for mtop = 174.3 GeV in this scenario, which is slightly below the
bound in the unconstrained MSSM.Comment: 10 pages, 3 figure
Irreversible processes and the accelerated-decelerated phases of the Universe
A model for the Universe is proposed where it is considered as a mixture of
scalar and matter fields. The particle production is due to an irreversible
transfer of energy from the gravitational field to the matter field and
represented by a non-equilibrium pressure. This model can simulate three
distinct periods of the Universe: (a) an accelerated epoch where the energy
density of the scalar field prevails over the matter field, (b) a past
decelerated period where the energy density of the matter field becomes more
predominant than the scalar energy density, and (c) a present acceleration
phase where the scalar energy density overcomes the energy density of the
matter field.Comment: 6 pages, 2 figures, to be published in Brazilian Journal of Physic
Interacting spin 0 fields with torsion via Duffin-Kemmer-Petiau theory
Here we study the behaviour of spin 0 sector of the DKP field in spaces with
torsion. First we show that in a Riemann-Cartan manifold the DKP field presents
an interaction with torsion when minimal coupling is performed, contrary to the
behaviour of the KG field, a result that breaks the usual equivalence between
the DKP and the KG fields.
Next we analyse the case of Teleparallel Equivalent of General Relativity
Weitzenbock manifold, showing that in this case there is a perfect agreement
between KG and DKP fields. The origins of both results are also discussed.Comment: 10 pages, no figures, uses REVTEX. Changes in the presentation, minor
misprints and one equation corrected. References updated. To appear in
General Relativity and Gravitatio
Spontaneous CP Violation in the Next-to-Minimal Supersymmetric Standard Model Revisited
We re-examine spontaneous CP violation at the tree level in the context of
the next-to-minimal supersymmetric standard model (NMSSM) with two Higgs
doublets and a gauge singlet field. We analyse the most general Higgs potential
without a discrete Z_3 symmetry, and derive an upper bound on the mass of the
lightest neutral Higgs boson consistent with present experimental data. We
investigate, in particular, its dependence on the admixture and CP-violating
phase of the gauge singlet field, as well as on tan(beta). To assess the
viability of the spontaneous CP violation scenario, we estimate epsilon_K by
applying the mass insertion approximation. We find that a non-trivial flavour
structure in the soft-breaking A terms is required to account for the observed
CP violation in the neutral kaon sector. Furthermore, combining the
minimisation conditions for spontaneous CP violation with the constraints
coming from K0-K0bar mixing, we find that the upper bound on the lightest
Higgs-boson mass becomes stronger. We also point out that the electric dipole
moments of electron and neutron are a serious challenge for SUSY models with
spontaneous CP violation.Comment: 19 pages, LaTeX2e, 5 figures; matches the published versio
- âŠ