483 research outputs found

    Financial liberalisation: from segmented to integrated economies

    Get PDF
    Cataloged from PDF version of article.Capital market liberalisation transforms segmented stock markets into integrated ones. Further impact should be expected on the dynamics of the rest of the domestic economy. This study presents evidence to that effect. A significant change after liberalisation is the emergence of world returns as an influential factor on other economic fundamentals. The information content of world returns influences emerging market returns prior to capital market liberalisation and this relation continues after capital market liberalisation. What is new after liberalisation is the influence of world returns on the dynamics of the domestic economy as a whole and its relation to stock returns. © 2003 Elsevier Inc. All rights reserved

    Origin of the large thermoelectric power in oxygen-variable RBaCo_{2}O_{5+x} (R=Gd, Nd)

    Full text link
    Thermoelectric properties of GdBaCo_{2}O_{5+x} and NdBaCo_{2}O_{5+x} single crystals have been studied upon continuous doping of CoO_2 planes with either electrons or holes. The thermoelectric response and the resistivity behavior reveal a hopping character of the transport in both compounds, providing the basis for understanding the recently found remarkable divergence of the Seebeck coefficient at x=0.5. The doping dependence of the thermoelectric power evinces that the configurational entropy of charge carriers, enhanced by their spin and orbital degeneracy, plays a key role in the origin of the large thermoelectric response in these correlated oxides.Comment: 5 pages, 4 figures, accepted for publication in PR

    Transport and magnetic properties of GdBaCo_{2}O_{5+x} single crystals: A cobalt oxide with square-lattice CoO_2 planes over a wide range of electron and hole doping

    Full text link
    Single crystals of the layered perovskite GdBaCo_{2}O_{5+x} (GBCO) have been grown by the floating-zone method, and their transport, magnetic, and structural properties have been studied in detail over a wide range of oxygen contents. The obtained data are used to establish a rich phase diagram centered at the "parent'' compound GdBaCo_{2}O_{5.5} -- an insulator with Co ions in the 3+ state. An attractive feature of GBCO is that it allows a precise and continuous doping of CoO_{2} planes with either electrons or holes, spanning a wide range from the charge-ordered insulator at 50% electron doping (x=0) to the undoped band insulator (x=0.5), and further towards the heavily hole-doped metallic state. This continuous doping is clearly manifested in the behavior of thermoelectric power which exhibits a spectacular divergence with approaching x=0.5, where it reaches large absolute values and abruptly changes its sign. At low temperatures, the homogeneous distribution of doped carriers in GBCO becomes unstable, and both the magnetic and transport properties point to an intriguing nanoscopic phase separation. We also find that throughout the composition range the magnetic behavior in GBCO is governed by a delicate balance between ferromagnetic (FM) and antiferromagnetic (AF) interactions, which can be easily affected by temperature, doping, or magnetic field, bringing about FM-AF transitions and a giant magnetoresistance (MR) phenomenon. An exceptionally strong uniaxial anisotropy of the Co spins, which dramatically simplifies the possible spin arrangements, together with the possibility of continuous ambipolar doping turn GBCO into a model system for studying the competing magnetic interactions, nanoscopic phase separation and accompanying magnetoresistance phenomena.Comment: 31 pages, 32 figures, submitted to Phys. Rev.

    Spin-Orbit Coupling and Anomalous Angular-Dependent Magnetoresistance in the Quantum Transport Regime of PbS

    Full text link
    We measured magnetotransport properties of PbS single crystals which exhibit the quantum linear magnetoresistance (MR) as well as the static skin effect that creates a surface layer of additional conductivity. The Shubnikov-de Haas oscillations in the longitudinal MR signify the peculiar role of spin-orbit coupling. In the angular-dependent MR, sharp peaks are observed when the magnetic field is slightly inclined from the longitudinal configuration, which is totally unexpected for a system with nearly spherical Fermi surface and points to an intricate interplay between the spin-orbit coupling and the conducting surface layer in the quantum transport regime.Comment: 5 pages, 5 figure

    Financial liberalisation: From segmented to integrated economies

    Get PDF
    Capital market liberalisation transforms segmented stock markets into integrated ones. Further impact should be expected on the dynamics of the rest of the domestic economy. This study presents evidence to that effect. A significant change after liberalisation is the emergence of world returns as an influential factor on other economic fundamentals. The information content of world returns influences emerging market returns prior to capital market liberalisation and this relation continues after capital market liberalisation. What is new after liberalisation is the influence of world returns on the dynamics of the domestic economy as a whole and its relation to stock returns. © 2003 Elsevier Inc. All rights reserved

    Agronomical valorization of eluates from the industrial production of microorganisms: Chemical, microbiological, and ecotoxicological assessment of a novel putative biostimulant

    Get PDF
    Plant Biostimulants (BSs) are a valid supplement to be considered for the integration of conventional fertilization practices. Research in the BS field keeps providing alternative products of various origin, which can be employed in organic and conventional agriculture. In this study, we investigated the biostimulant activity of the eluate obtained as a by-product from the industrial production of lactic acid bacteria on bare agricultural soil. Eluates utilization is in line with the circular economy principle, creating economical value for an industrial waste product. The research focused on the study of physical, chemical, biochemical, and microbiological changes occurring in agricultural soil treated with the biowaste eluate, applied at three different dosages. The final aim was to demonstrate if, and to what extent, the application of the eluate improved soil quality parameters and enhanced the presence of beneficial soil-borne microbial communities. Results indicate that a single application at the two lower dosages does not have a pronounced effect on the soil chemical parameters tested, and neither on the biochemical proprieties. Only the higher dosage applied reported an improvement in the enzymatic activities of β-glucosidase and urease and in the chemical composition, showing a higher content of total, nitric and ammonia N, total K, and higher humification rate. On the other hand, microbial communities were strongly influenced at all dosages, showing a decrease in the bacterial biodiversity and an increase in the fungal biodiversity. Bioinformatic analysis revealed that some Operative Taxonomic Units (OTUs) promoted by the eluate application, belong to known plant growth promoting microbes. Some other OTUs, negatively influenced were attributed to known plant pathogens, mainly Fusarium spp. Finally, the ecotoxicological parameters were also determined and allowed to establish that no toxic effect occurred upon eluate applications onto soil

    Naphthalene-based bis-N-salicylidene aniline dyes: Crystal structures, Hirshfeld surface analysis, computational study and molecular docking with the SARS-CoV-2 proteins

    Full text link
    In this work, we report structural and computational studies of a series of naphthalene-based bis-N-salicylidene aniline dyes, namely N,N′-bis-salicylidene-1,5-diaminonaphthalene (1), N,N′-bis(3-hydroxysalicylidene)-1,5-diaminonaphthalene (2) and N,N′-bis(3-methoxysalicylidene)-1,5-diaminonaphthalene (3). For 3, two polymorphs are known, namely 3red and 3yellow. Both polymorphs of 3 were analyzed and discussed. All the molecules adopt an enol-imine tautomer, stabilized by two intramolecular O–H⋯ N hydrogen bonds. The structure of 2 is further stabilized by a couple of additional O–H⋯ O hydrogen bonds and by intermolecular O–H⋯ O interactions, yielding a 1D zig-zag supramolecular chain. Molecules of 2, 3red and 3yellow are interlinked through intermolecular C–H⋯ π interactions, while the crystal packing of 1 and 2 is also described by intermolecular π⋯ π interactions. More than 90% of the total Hirshfeld surface area for all the discussed molecules is occupied by H⋯ H, H⋯ C, H⋯ O and C⋯ C contacts. The polymorphs 3red and 3yellow, despite being chemically the same, differ geometrically, thus yielding remarkably different Hirshfeld surfaces. The Hirshfeld surface of 3yellow is very similar to that of 2. All structures are mainly characterized by the dispersion energy framework followed by the less significant electrostatic energy framework contribution. Molecular docking studies were employed to inspect the effect of 1–3 on the SARS-CoV-2 protein targets. The docking analysis revealed that the dye 2 showed the best binding energies toward Papain-like protease (PLpro, –10.40 kcal/mol), nonstructural protein 14 (nsp14 (N7-MTase), –10.10 kcal/mol), RdRp-RTP (–9.70 kcal/mol) and nonstructural protein 3 (nsp3_range 207-379-MES, –9.30 kcal/mol). The obtained results can give an insight into chemical and biological activities of the studied molecules that could aid in designing of potent reagents SARS-CoV-2. © 2021, Iranian Chemical Society.Ministry of Education and Science of the Russian Federation, Minobrnauka: 730000Ф.99.1, БВ09АА00006The authors thank Esin Akı Yalcin and the research group for technical assistance. This work was supported by state assignment of the Ministry of Science and Higher Education of the Russian Federation (Project Reg. No. 730000Ф.99.1.БВ09АА00006. This work was supported by state assignment of the Ministry of Science and Higher Education of the Russian Federation (Project Reg. No. 730000Ф.99.1.БВ09АА00006)

    Topological crystalline insulator states in Pb(1-x)Sn(x)Se

    Full text link
    Topological insulators are a novel class of quantum materials in which time-reversal symmetry, relativistic (spin-orbit) effects and an inverted band structure result in electronic metallic states on the surfaces of bulk crystals. These helical states exhibit a Dirac-like energy dispersion across the bulk bandgap, and they are topologically protected. Recent theoretical proposals have suggested the existence of topological crystalline insulators, a novel class of topological insulators in which crystalline symmetry replaces the role of time-reversal symmetry in topological protection [1,2]. In this study, we show that the narrow-gap semiconductor Pb(1-x)Sn(x)Se is a topological crystalline insulator for x=0.23. Temperature-dependent magnetotransport measurements and angle-resolved photoelectron spectroscopy demonstrate that the material undergoes a temperature-driven topological phase transition from a trivial insulator to a topological crystalline insulator. These experimental findings add a new class to the family of topological insulators. We expect these results to be the beginning of both a considerable body of additional research on topological crystalline insulators as well as detailed studies of topological phase transitions.Comment: v2: published revised manuscript (6 pages, 3 figures) and supplementary information (5 pages, 8 figures

    Josephson supercurrent through a topological insulator surface state

    Get PDF
    Topological insulators are characterized by an insulating bulk with a finite band gap and conducting edge or surface states, where charge carriers are protected against backscattering. These states give rise to the quantum spin Hall effect without an external magnetic field, where electrons with opposite spins have opposite momentum at a given edge. The surface energy spectrum of a threedimensional topological insulator is made up by an odd number of Dirac cones with the spin locked to the momentum. The long-sought yet elusive Majorana fermion is predicted to arise from a combination of a superconductor and a topological insulator. An essential step in the hunt for this emergent particle is the unequivocal observation of supercurrent in a topological phase. Here, we present the first measurement of a Josephson supercurrent through a topological insulator. Direct evidence for Josephson supercurrents in superconductor (Nb) - topological insulator (Bi2Te3) - superconductor e-beam fabricated junctions is provided by the observation of clear Shapiro steps under microwave irradiation, and a Fraunhofer-type dependence of the critical current on magnetic field. The dependence of the critical current on temperature and length shows that the junctions are in the ballistic limit. Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a topologically non-trivial two-dimensional surface state. We argue that the ballistic Josephson current is hosted by this surface state despite the fact that the normal state transport is dominated by diffusive bulk conductivity. The lateral Nb-Bi2Te3-Nb junctions hence provide prospects for the realization of devices supporting Majorana fermions
    corecore