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THEORETICAL MODELS FOR JOSEPHSON CURRENT

Any hybrid structure containing superconductors can be described on the basis of the Gor’kov

equations [1]. In practice, these equations are typically simplified by a quasi-classical approxima-

tion, which is justified as long as the Fermi-wavelength is much smaller than other length scales

in the problem. For superconductor - normal metal - superconductor (SNS) Josephson junctions

Eilenberger quasi-classical equations [2] are used when the elastic mean free path le is larger than

the length L and the coherence length ξ. The electronic transport in this clean limit is ballistic

across the N layer. In the dirty limit of le � L, ξ, transport is diffusive and the Usadel equations

[3] are used. When the transparency between the S and N layers is not unity, additional insulating

barriers (I) are typically included.

Eilenberger theory fit

The clean limit theory on the basis of the Gor’kov equations for short SINIS junctions with

arbitrary barrier transparency D [4] was generalized [5, 6] for arbitrary junction length on the

basis of Eilenberger equations. The supercurrent density J is found to be [6]
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∑
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where the Matsubara frequency is given by ωn = 2πkBT (2n+1), and Ωn =
√

ω2
n +∆2. ∆ is the

gap in the S electrodes, χ the phase difference across the junction, while vF is the Fermi velocity

of the normal metal interlayer. The integral runs over all trajectory directions and can be adjusted

to actual junction geometries.

Eq. (1) was evaluated as function of junction length and fitted to the measured critical current

density. Since the prefactors in Eq. (1) implicitly contain the normal state resistance, which is

not known for our junctions due to the bulk shunt, we left the overall scale of J free in the fit.

Subsequently, the best fit to the data at 1.6 K was obtained for ξ = h̄vF
2πkBT

= 75 nm. It was found

numerically that the value of the barrier transparencies in the symmetric case had no influence on

the fitting value for ξ.
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The temperature dependence of the critical current was calculated using Eq. (1) and the ob-

tained coherence length. The fit to the measured data is excellent, considering that only the overall

scale of J was free in this case.

In fact, the overall scaling factor of the critical current in Eq. (1) can be estimated as well.

The transparency of the interfaces between the topological insulator and the superconductor are

important in this respect. The high transparency of our interfaces can be determined from the I(V )

characteristic. The excess current in the I(V ) characteristic is about 67% of the critical current Ic.

In the Blonder-Tinkham-Klapwijk model [7], this gives a barrier strength of about Z = 0.6. For

these high transparencies, at the lowest temperatures and for the 50 nm junction, Eq. (1) provides

an IcRN product of the order of 1-2 mV. However the 3D bulk shunt will strongly reduce this value

by decreasing Rn. From the Shubnikov de Haas oscillations we can estimate the surface to bulk

resistance ratio. The surface resistance can be found through RSDH = RcRtRd. With RtRD = 0.77

Ω, we estimate a surface resistance of about 2% of the total resistance. Thus, the estimated surface

resistance is approximately 29 Ω, which together with Ic = 32 µA results in IcRN = 1 mV, agreeing

with the Eilenberger model. This agreement between model and measurements underlines the

conclusion that supercurrent is flowing through the ballistic channels of the topological surfaces

states, shunted by a normal state bulk conduction. Small quantitative differences in prefactors can

be expected when including the TI in the junction model, such as a calculated prefactor of 2 in

Ref. [8].

Usadel theory fit

The Usadel equation [3] for the S and N layers in a diffusive SNS junction can be written as

ΦS,N = ∆S,N + ξ2S,N
πkBTc

ωnGS,N

d

dx

(
G2

S,N

d

dx
ΦS,N

)
, (3)

where Φ is defined in terms of the normal Green’s function G and the anomalous Green’s function

F by ΦG = ωnF . The normalization condition FF ∗ +G2 = 1 then gives

GS,N =
ωn√

ω2
n + ΦS,NΦ∗

S,N

(4)

The coherence length is given by ξ =
√

h̄D
2πkBT

where D = vF le/3 is the diffusion constant.
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The pair potentials ∆S,N are given by

∆S,N ln
T

TcS,N

+ 2πkBT
∑
ωn>0

∆S,N − ΦS,NGS,N

ωn

= 0 (5)

In the dirty limit, Zaitsev’s effective boundary conditions for quasi-classical Green’s functions

[9] were simplified by Kupriyanov and Lukichev [10]. When Φ and G are found using these

boundary conditions, finally the supercurrent density can be obtained from

J =
2πkBT

eρN
Im

∑
ωn>0

G2
N

ω2
n

ΦN
d

dx
ΦN , (6)

where ρN is the N layer resistivity.

For junctions with arbitrary length and arbitrary barrier transparency, no analytical expressions

exist for the Green’s functions. Therefore a numerical code was used to fit the data. In the effective

boundary conditions [10], two parameters play a role, γ = ρSξS
ρN ξN

and γB = 2le
3ξN

〈
1−D
D

〉
, where the

average of the transparencies takes place over all trajectory angles. For Nb as S electrode and

Bi2Te3 as N interlayer, γ � 1 because of the lower resistivity ρ of Nb as compared to Bi2Te3.

The junctions transparency is not known a priori, but from the voltage drop over a barrier in the

normal state, as well as the large amount of excess current (more than 50% of the critical current)

in the current-voltage characteristics of the superconducting state, a conservative estimate gives

D >∼ 0.5, which implies γB <∼ 1. Within this parameter range (or even outside the range) no

consistent fit could be made to the data. Figure 6a shows the fit to the temperature dependence

of the critical current for γ = 0.1, γB = 1 and ξ(Tc) =
√

h̄D
2πkBTc

= 21 nm, the latter value as

obtained from fitting the length dependence of the junction.

∗ Also at Leiden Institute of Physics, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Nether-
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