401 research outputs found
Interactions, Behavior, And Stability of Fluorenone inside Zeolite Nanochannels
The development of functional materials based on the supramolecular organization of photoactive species in nanosized porous matrices requires a deep knowledge of host 12guest interactions and of their influence on material properties and stability. Extensive first-principles investigations on the fluorescent dye fluorenone inside zeolite L, both at dry conditions and in the presence of water, have unraveled the molecular origin of the peculiar stability of this composite in humid environments, a fundamental prerequisite for practical applications. Results of first-principles molecular dynamics simulations, structural optimizations, and TDDFT calculations, validated by comparison with experimental data, provide a comprehensive picture of the structure, energetics, electronic excitation properties, and room-temperature behavior of the fluorenone/zeolite L composite and predict a substantial optical anisotropy for this material also maintained upon contact with water. The interaction of the fluorenone carbonyl group with the zeolite extraframework potassium cations is responsible for the dye stabilization in zeolite L nanochannels and features itself as a general leitmotiv regarding important properties of carbonyl functionalized photoactive species in hydrophilic matrices
The effect of pressure on open-framework silicates: elastic behaviour and crystal-fluid interaction
The elastic behaviour and the structural evolution of microporous materials compressed hydrostatically in a pressure-transmitting fluid are drastically affected by the potential crystal-fluid interaction, with a penetration of new molecules through the zeolitic cavities in response to applied pressure. In this manuscript, the principal mechanisms that govern the P-behaviour of zeolites with and without crystal-fluid interaction are described, on the basis of previous experimental findings and computational modelling studies. When no crystal-fluid interaction occurs, the effects of pressure are mainly accommodated by tilting of (quasi-rigid) tetrahedra around O atoms that behave as hinges. Tilting of tetrahedra is the dominant mechanism at low-mid P-regime, whereas distortion and compression of tetrahedra represent the mechanisms which usually dominate the mid-high P regime. One of the most common deformation mechanisms in zeolitic framework is the increase of channels ellipticity. The deformation mechanisms are dictated by the topological configuration of the tetrahedral framework; however, the compressibility of the cavities is controlled by the nature and bonding configuration of the ionic and molecular content, resulting in different unit-cell volume compressibility in isotypic structures. The experimental results pertaining to compression in "penetrating" fluids, and thus with crystal-fluid interaction, showed that not all the zeolites experience a P-induced intrusion of new monoatomic species or molecules from the P-transmitting fluids. For example, zeolites with well-stuffed channels at room conditions (e.g. natural zeolites) tend to hinder the penetration of new species through the zeolitic cavities. Several variables govern the sorption phenomena at high pressure, among those: the "free diameters" of the framework cavities, the chemical nature and the configuration of the extra-framework population, the partial pressure of the penetrating molecule in the fluid (if mixed with other non-penetrating molecules), the rate of P-increase, the surface/volume ratio of the crystallites under investigations and the temperature at which the experiment is conducted. An overview of the intrusion phenomena of monoatomic species (e.g. He, Ar, Kr), small (e.g. H2O, CO2) and complex molecules, along with the P-induced polymerization phenomena (e.g. C2H2, C2H4, C2H6O, C2H6O2, BNH6, electrolytic MgCl2*21H2O solution) is provided, with a discussion of potential technological and geological implications of these experimental findings
TS-1 from First Principles
First principles Studies on periodic TS-1 models at Ti content corresponding to 1.35% and 2.7% in weight of TiO2 are presented. The problem of Ti preferential siting is addressed by using realistic models corresponding to the TS-1 unit cell [TiSi95O192] and adopting for the first time a periodic DFT approach, thus providing an energy scale for Ti in the different crystallographic sites in nondefective TS-1. The structure with Ti in site T3 is the most stable, followed by T4 (+0.3 kcal/mol); the less stable structure, corresponding to Ti in T1, is 5.6 kcal/mol higher in energy. The work has been extended to investigate models with two Ti's per unit cell [Ti2Si94O192] (2.7%). The possible existence of Ti-O-Ti bridges, formed by two corner-sharing TiO4 tetrahedra, is discussed. By using Cluster models cut from the optimized periodic DFT structures, both vibrational (DFT) and electronic excitation spectra (TDDFT) have been calculated and favorably compared with the experimental data available on TS-1. Interesting features emerged from excitation spectra: (i) Isolated tetrahedral Ti sites show a Beer-Lambert behavior, with absorption intensity proportional to concentration. Such a behavior is gradually lost when two Ti's occupy sites close to each other. (ii) The UV-vis absorption in the 200-250 nm region can be associated with transitions from Occupied states delocalized on the framework oxygens to empty d states localized on Ti. Such extended-states-to-local-states transitions may help the interpretation of the photovoltaic activity recently detected in Ti zeolites
Water in acid boralites: Hydration effects on framework B sites
Properties and behavior of protonated boron-containing zeolites at different hydration degree have been investigated by means of periodic DFT approaches. Geometry optimization and room-temperature Car-Parrinello molecular dynamics results, in line with experimental findings, indicate that the BO3-bound silanolic acid site typical of dry boralites should convert to a solvated H3O+ hydrogen bonded to tetrahedral BO4 at moderate water content. By increasing the water loading, the tetrahedral structure of the B site is stabilized and the physicochemical properties of the water molecules solvating the acid proton gradually approach the liquid-phase ones. A relevant role of structural and vibrational properties of the zeolite framework in the water-induced trigonal-to-tetrahedral transition at the B site is highlighted by simulation results
"Hot" Surface Activation of Molecular Complexes: Insight from Modeling Studies
Rock-and-roll over hot floors: Theoretical modeling of the first activation stages of a Cu complex on top of a heated surface (750 K) revealed two mobility regimes, a slow bump-and-rock diffusion over the surface and a fast roll-and-go motion accompanied by significant temperature-induced bond oscillations. This study enables a deeper insight into "hot" surface molecular activation processes.Tanz auf dem Vulkan: Das Modellieren der ersten Aktivierungsstufen eines Cu-Komplexes auf einer beheizten Oberfl\ue4che (750\u2005K) enth\ufcllte zwei Bewegungsarten: eine langsame Diffusion durch \u201eAnsto
fen und Taumeln\u201c und eine schnelle Rollbewegung, die mit deutlichen temperaturinduzierten Bindungsoszillationen einhergeht. Diese Befunde geben einen Einblick in die Prozesse bei der Aktivierung durch \u201ehei
fe\u201c Oberfl\ue4chen
Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia
Magnetic iron oxide nanoparticles (IONPs) have gained momentum in the field of biomedical applications. They can be remotely heated via alternating magnetic fields, and such heat can be transferred from the IONPs to the local environment. However, the microscopic mechanism of heat transfer is still debated. By X-ray total scattering experiments and first-principles simulations, we show how such heat transfer can occur. After establishing structural and microstructural properties of the maghemite phase of the IONPs, we built a maghemite model functionalized with aminoalkoxysilane, a molecule used to anchor (bio)molecules to oxide surfaces. By a linear response theory approach, we reveal that a resonance mechanism is responsible for the heat transfer from the IONPs to the surroundings. Heat transfer occurs not only via covalent linkages with the IONP but also through the solvent hydrogen-bond network. This result may pave the way to exploit the directional control of the heat flow from the IONPs to the anchored molecules─i.e., antibiotics, therapeutics, and enzymes─for their activation or release in a broader range of medical and industrial applications
Qualitative analysis of determinants of measles, mumps, rubella vaccine uptake in European parents
Background
Parental concerns about measles, mumps and rubella (MMR)
vaccination negatively influence decision to vaccinate their
children, this leading to the recently reported vaccine coverage
drop in Europe. The ESCULAPIO project, funded by the
Italian National Centre for Disease Prevention and Control of
the Ministry of Health (CCM), is investigating the main factors
underlying decisions on vaccinations, in order to implement
targeted campaigns and plan effective strategies.
Methods
A systematic literature review was carried out on studies
describing the determinants underlying MMR vaccination
uptake in European parents.
Results
A total of 45 studies were included in the analysis. The most
common factors related with MMR vaccine uptake were
knowledge, beliefs, perceptions on vaccines and diseases,
reported in 44,4% of the articles. Parents showed doubts on
vaccine efficacy, safety, side effects, while in other studies
positive beliefs and perceptions were reported. Attitudes/
behaviours were often determinants of the uptake as well as
demographic factors (40%). While higher no. of children in
the household, lower income, temporary or lacking employment,
and non-regular marital status were generally a barrier
for vaccination, education level and house tenure were
contradictory. Information source/advice and influence or
trust of other people, institutions, media were often reported
(31,1% and 17,8% respectively), but a clear direction was not
showed.
Conclusions
These preliminary findings showed that communication
strategies should provide parents with clear messages on
vaccines and preventable infectious diseases, in order to build
right knowledge and create correct beliefs and behaviours.
Communication should be addressed mainly to more disadvantaged,
larger and non-regular families. A quantitative
analysis is been currently carrying out and will provide more
information on the direction of the effect of the different
factor
Overview of methods used to evaluate the adequacy of nutrient intakes for individuals and populations
The objective of the present paper is to review the methods of measuring micronutrient intake adequacy for individuals and for populations in order to ascertain best practice. A systematic review was conducted to locate studies on the methodological aspects of measuring nutrient adequacy. The results showed that for individuals, qualitative methods (to find probability of adequacy) and quantitative methods (to find confidence of adequacy) have been proposed for micronutrients where there is enough data to set an average nutrient requirement (ANR). If micronutrients do not have ANR, an adequate intake (AI) is often defined and can be used to assess adequacy, provided the distribution of daily intake over a number of days is known. The probability of an individual's intake being excessive can also be compared with the upper level of safe intake and the confidence of this estimate determined in a similar way. At the population level, adequacy can be judged from the ANR using the probability approach or its short cut – the estimated average requirement cut-point method. If the micronutrient does not have an ANR, adequacy cannot be determined from the average intake and must be expressed differently. The upper level of safe intake can be used for populations in a similar way to that of individuals. All of the methodological studies reviewed were from the American continent and all used the methodology described in the Institute of Medicine publications. The present methodology should now be adapted for use in Europe
- …