360 research outputs found

    Observation of thickness dependence of magnetic surface anisotropy in ultrathin amorphous films.

    Get PDF
    Copyright © 1990 The American Physical SocietyFerromagnetic resonance (FMR) and SQUID magnetometry measurements have been made on multilayers of amorphous Fe70B30/Ag. The dependence of the magnetic surface anisotropy constant Ks on the magnetic layer thickness 2L has been determined in the range 1.6 Å16.5 Å, but decreases monotonically towards zero as 2L decreases from 16.5 Å towards zero. The FMR results can be well described by a theory developed for ultrathin amorphous ferromagnetic layers

    Stability of Bose Einstein condensates of hot magnons in YIG

    Full text link
    We investigate the stability of the recently discovered room temperature Bose-Einstein condensate (BEC) of magnons in Ytrrium Iron Garnet (YIG) films. We show that magnon-magnon interactions depend strongly on the external field orientation, and that the BEC in current experiments is actually metastable - it only survives because of finite size effects, and because the BEC density is very low. On the other hand a strong field applied perpendicular to the sample plane leads to a repulsive magnon-magnon interaction; we predict that a high-density magnon BEC can then be formed in this perpendicular field geometry.Comment: Submitted to Physical Review Letter

    Towards Autopoietic Computing

    Full text link
    A key challenge in modern computing is to develop systems that address complex, dynamic problems in a scalable and efficient way, because the increasing complexity of software makes designing and maintaining efficient and flexible systems increasingly difficult. Biological systems are thought to possess robust, scalable processing paradigms that can automatically manage complex, dynamic problem spaces, possessing several properties that may be useful in computer systems. The biological properties of self-organisation, self-replication, self-management, and scalability are addressed in an interesting way by autopoiesis, a descriptive theory of the cell founded on the concept of a system's circular organisation to define its boundary with its environment. In this paper, therefore, we review the main concepts of autopoiesis and then discuss how they could be related to fundamental concepts and theories of computation. The paper is conceptual in nature and the emphasis is on the review of other people's work in this area as part of a longer-term strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure

    Revealing the origin of the vertical hysteresis loop shifts in an exchange biased Co/YMnO3_3 bilayer

    Full text link
    We have investigated exchange bias effects in bilayers composed by the antiferromagnetic o-YMnO3_3 and ferromagnetic Co thin film by means of SQUID magnetometry, magnetoresistance, anisotropic magnetoresistance and planar Hall effect. The magnetization and magnetotransport properties show pronounced asymmetries in the field and magnetization axes of the field hysteresis loops. Both exchange bias parameters, the exchange bias field HE(T)H_{E}(T) as well as the magnetization shift ME(T)M_E(T), vanish around the N\'eel temperature TN45T_N \simeq 45 K. We show that the magnetization shift ME(T)M_E(T) is also measured by a shift in the anisotropic magnetoresistance and planar Hall resistance having those a similar temperature dependence as the one obtained from magnetization measurements. Because the o-YMnO3_3 film is highly insulating, our results demonstrate that the ME(T)M_E(T) shift originates at the interface within the ferromagnetic Co layer. To show that the main results obtained are general and not because of some special characteristics of the o-YMO3_3 layer, similar measurements were done in Co/CoO micro-wires. The transport and magnetization characterization of the micro-wires supports the main conclusion that these effects are related to the response of the ferromagnetic Co layer at the interface.Comment: 16 Figures, in press at J. Phys.: Condensed Matter 201

    Effect of spacer material on the magnetic surface anisotropy in ultrathin Fe70B30 multilayer films

    Get PDF
    It has been found recently that the magnetic surface anisotropy Ks in Fe70B30/Ag multilayer films decreases monotonically with magnetic layer thickness (2L) for 2L<16.5 Å. In order to determine possible effects of the spacer material on the surface anisotropy in the aforementioned system, Ag has been replaced with Al2O3 and ferromagnetic resonance (FMR) measurements have been made on these films. These Fe70B30/Al2O3 films were fabricated by magnetron sputtering and were characterized by X-ray-diffraction and vibrating sample magnetometer (VSM) measurements in addition to FMR. In the region where Ks depends upon 2L, the data is insufficient to confirm the thickness dependence of Ks that was observed in Fe70B30/Ag, while in the region where Ks is independent of 2L, the values of Ks deduced for Fe70B30/Ag and Fe70B30/Al2O3 are in good agreement. The latter is particularly interesting in light of the enormous difference in conductivity between Ag and Al2O3

    Anomalous behavior of spin wave resonances in Ga_{1-x}Mn_{x}As thin films

    Full text link
    We report ferromagnetic and spin wave resonance absorption measurements on high quality epitaxially grown Ga_{1-x}Mn_{x}As thin films. We find that these films exhibit robust ferromagnetic long-range order, based on the fact that up to seven resonances are detected at low temperatures, and the resonance structure survives to temperatures close to the ferromagnetic transition. On the other hand, we observe a spin wave dispersion which is linear in mode number, in qualitative contrast with the quadratic dispersion expected for homogeneous samples. We perform a detailed numerical analysis of the experimental data and provide analytical calculations to demonstrate that such a linear dispersion is incompatible with uniform magnetic parameters. Our theoretical analysis of the ferromagnetic resonance data, combined with the knowledge that strain-induced anisotropy is definitely present in these films, suggests that a spatially dependent magnetic anisotropy is the most likely reason behind the anomalous behavior observed.Comment: 9 pages, including 6 figure

    Tverberg-type theorems for intersecting by rays

    Full text link
    In this paper we consider some results on intersection between rays and a given family of convex, compact sets. These results are similar to the center point theorem, and Tverberg's theorem on partitions of a point set

    Quantum spin fluctuations in the dipolar Heisenberg-like rare earth pyrochlores

    Full text link
    The magnetic pyrochlore oxide materials of general chemical formula R2Ti2O7 and R2Sn2O7 (R = rare earth) display a host of interesting physical behaviours depending on the flavour of rare earth ion. These properties depend on the value of the total magnetic moment, the crystal field interactions at each rare earth site and the complex interplay between magnetic exchange and long-range dipole-dipole interactions. This work focuses on the low temperature physics of the dipolar isotropic frustrated antiferromagnetic pyrochlore materials. Candidate magnetic ground states are numerically determined at zero temperature and the role of quantum spin fluctuations around these states are studied using a Holstein-Primakoff spin wave expansion to order 1/S. The results indicate the strong stability of the proposed classical ground states against quantum fluctuations. The inclusion of long range dipole interactions causes a restoration of symmetry and a suppression of the observed anisotropy gap leading to an increase in quantum fluctuations in the ground state when compared to a model with truncated dipole interactions. The system retains most of its classical character and there is little deviation from the fully ordered moment at zero temperature.Comment: Latex2e, 18 pages, 4 figures, IOP forma

    Spin texture on top of vortex avalanches in Nb/Al_2O_3/Co thin film heterostructures

    Get PDF
    We report on magneto-optical imaging, magnetization, Hall effect and magneto-resistance experiments in Nb/Al_2O_3/Co thin film heterostructures. The magnetic field is applied perpendicularly to the plane of the film and gives rise to abrupt flux penetration of dendritic form. A magnetization texture is imprinted in the Co layer in perfect coincidence with these ramifications. The spin domains that mimic the vortex dendrites are stable upon the field removal. Moreover, the imprinted spin structure remains visible up to room temperature. Complementary magnetization, Hall effect and magneto-resistance experiments were performed in a similar sample where electrical contacts were placed on the Co layer. In the region of the field - temperature diagram where flux instabilities are known to occur in Nb films, irregular jumps are observed in the magnetic hysteresis and large amplitude noise is detected in the magneto-resistance and Hall resistivity data when measured as a function of the field.Comment: 13 pages, 8 figure
    corecore