161 research outputs found

    Strangeness production in antiproton-nucleus collisions

    Full text link
    Antiproton annihilations on nuclei provide a very interesting way to study the behaviour of strange particles in the nuclear medium. In low energy pˉ\bar p annihilations, the hyperons are produced mostly by strangeness exchange mechanisms. Thus, hyperon production in pˉA\bar p A interactions is very sensitive to the properties of the antikaon-nucleon interaction in nuclear medium. Within the Giessen Boltzmann-Uehling-Uhlenbeck transport model (GiBUU), we analyse the experimental data on Λ\Lambda and KS0K^0_S production in pˉA\bar p A collisions at plab=0.2−4p_{\rm lab}=0.2-4 GeV/c. A satisfactory overall agreement is reached, except for the KS0K^0_S production in pˉ+20\bar p+^{20}Ne collisions at plab=608p_{\rm lab}=608 MeV/c, where we obtain substantially larger KS0K^0_S production rate. We also study the Ξ\Xi hyperon production, important in view of the forthcoming experiments at FAIR and J-PARC.Comment: 8 pages, 4 figures, invited talk given by A.B. Larionov at the 10th International Conference on Low Energy Antiproton Physics (LEAP2011), Vancouver, Canada, Apr 27 - May 1, 2011, Hyperfine Interact. in pres

    The Spectrum of the Hybrid Mesons with Heavy Quarks from the B.S. Equation

    Get PDF
    We construct the B.S. equation for the hybrid mesons under instantaneous approximation. The kernel is chosen as the sum of an one-gluon exchange potential and a linear confining potential. The equations are solved by numerical method, and the spectrum of hybrid mesons bbˉgb\bar{b}g and ccˉgc\bar{c}g are obtained.Comment: 11 pages, latex, 3 figure

    Preliminary Results from Recent Measurements of the Antiprotonic Helium Hyperfine Structure

    Full text link
    We report on preliminary results from a systematic study of the hyperfine (HF) structure of antiprotonic helium. This precise measurement which was commenced in 2006, has now been completed. Our initial analysis shows no apparent density or power dependence and therefore the results can be averaged. The statistical error of the observable M1 transitions is a factor of 60 smaller than that of three body quantum electrodynamic (QED) calculations, while their difference has been resolved to a precision comparable to theory (a factor of 10 better than our first measurement). This difference is sensitive to the antiproton magnetic moment and agreement between theory and experiment would lead to an increased precision of this parameter, thus providing a test of CPT invariance.Comment: 6 pages, 4 figure

    Flux Tube Zero-Point Motion, Hadronic Charge Radii, and Hybrid Meson Production Cross Sections

    Get PDF
    Flux tube zero-point motion produces quark displacements transverse to the flux tube which make significant contributions to hadronic charge radii. In heavy quark systems, these contributions can be related by Bjorken's sum rule to the rates for semileptonic decay to hybrid mesons. This connection can be generalized to other leptoproduction processes, where transverse contributions to elastic form factor slopes are related to the cross sections for the production of the associated hybrid states. I identify the flux tube overlap integral responsible for these effects as the strong QCD analogue of the Sudakov form factor of perturbative QCD.Comment: 16 pages, revised to clarify some points and to improve and correct the notation for the flux tube wave function

    Improved Study of the Antiprotonic Helium Hyperfine Structure

    Get PDF
    We report the initial results from a systematic study of the hyperfine (HF) structure of antiprotonic helium (n,l) = (37,~35) carried out at the Antiproton Decelerator (AD) at CERN. We performed a laser-microwave-laser resonance spectroscopy using a continuous wave (cw) pulse-amplified laser system and microwave cavity to measure the HF transition frequencies. Improvements in the spectral linewidth and stability of our laser system have increased the precision of these measurements by a factor of five and reduced the line width by a factor of three compared to our previous results. A comparison of the experimentally measured transition frequencies with three body QED calculations can be used to determine the antiproton spin magnetic moment, leading towards a test of CPT invariance.Comment: 14 pages 9 figure

    Semi-Classical Description of Antiproton Capture on Atomic Helium

    Full text link
    A semi-classical, many-body atomic model incorporating a momentum-dependent Heisenberg core to stabilize atomic electrons is used to study antiproton capture on Helium. Details of the antiproton collisions leading to eventual capture are presented, including the energy and angular momentum states of incident antiprotons which result in capture via single or double electron ionization, i.e. into [He++ pˉ^{++}\,\bar p or He+ pˉ^{+}\,\bar p], and the distribution of energy and angular momentum states following the Auger cascade. These final states are discussed in light of recently reported, anomalously long-lived antiproton states observed in liquid He.Comment: 15 pages, 9 figures may be obtained from authors, Revte

    Photo-- and Electroproduction of JPC=1−+J^{PC}=1^{-+} exotics

    Get PDF
    We estimate the kinematic dependence of the exclusive photo-- and electroproduction of JPC=1−+J^{PC}=1^{-+} exotic mesons due to π\pi exchange. We show that the kinematic dependence is largely independent of the exotic meson form factor, which is explicitly derived for a 1−+1^{-+} isovector hybrid meson in the flux-tube model of Isgur and Paton. The relevance to experiments currently planned at Jefferson Lab is indicated.Comment: 15 pages, latex, epsf, 8 postscript figure
    • …
    corecore