136 research outputs found

    Modelling the incomplete Paschen-Back effect in the spectra of magnetic Ap stars

    Full text link
    We present first results of a systematic investigation of the incomplete Paschen-Back effect in magnetic Ap stars. A short overview of the theory is followed by a demonstration of how level splittings and component strengths change with magnetic field strength for some lines of special astrophysical interest. Requirements are set out for a code which allows the calculation of full Stokes spectra in the Paschen-Back regime and the behaviour of Stokes I and V profiles of transitions in the multiplet 74 of FeII is discussed in some detail. It is shown that the incomplete Paschen-Back effect can lead to noticeable line shifts which strongly depend on total multiplet strength, magnetic field strength and field direction. Ghost components (which violate the normal selection rule on J) show up in strong magnetic fields but are probably unobservable. Finally it is shown that measurements of the integrated magnetic field modulus HsH_s are not adversely affected by the Paschen-Back effect, and that there is a potential problem in (magnetic) Doppler mapping if lines in the Paschen-Back regime are treated in the Zeeman approximation.Comment: 8 pages, 10 figures, to appear in MNRA

    Radiative diffusion in stellar atmospheres: diffusion velocities

    Get PDF
    The present paper addresses some of the problems in the buildup of element stratification in stellar magnetic atmospheres due to microscopic diffusion, in particular the redistribution of momentum among the various ionisation stages of a given element and the calculation of diffusion velocities in the presence of inclined magnetic fields. We have considerably modified and extended our CARAT code to provide radiative accelerations, not only from bound-bound but also from bound-free transitions. In addition, our code now computes ionisation and recombination rates, both radiative and collisional. These rates are used in calculating the redistribution of momentum among the various ionisation stages of the chemical elements. A careful comparison shows that the two different theoretical approaches to redistribution that are presently available lead to widely discrepant results for some chemical elements, especially in the magnetic case. In the absence of a fully satisfactory theory of redistribution, we propose to use the geometrical mean of the radiative accelerations from both methods. Diffusion velocities have been calculated for 28 chemical elements in a T_eff = 12000K, log g = 4.00 stellar magnetic atmosphere with solar abundances. Velocities and resulting element fluxes in magnetic fields are discussed; rates of abundance changes are analysed for systematic trends with field strength and field direction. Special consideration is given to the Si case and our results are confronted in detail with well-known results derived more than two decades ago.Comment: To be published in Astronomy & Astrophysics (accepted 02/03/2006

    Modelling element distributions in the atmospheres of magnetic Ap stars

    Full text link
    In recent papers convincing evidence has been presented for chemical stratification in Ap star atmospheres, and surface abundance maps have been shown to correlate with the magnetic field direction. Radiatively driven diffusion in magnetic fields is among the processes responsible for these inhomogeneities. Here we explore the hypothesis that equilibrium stratifications can, in a number of cases, explain the observed abundance maps and vertical distributions of the various elements. The investigation of equilibrium stratifications in stellar atmospheres with temperatures from 8500K to 12000K and fields up to 10 kG reveals considerable variations in the vertical distribution of the 5 elements studied (Mg, Si, Ca, Ti, Fe), often with zones of large over- or under-abundances and with indications of other competing processes (such as mass loss). Horizontal magnetic fields can be very efficient in helping the accumulation of elements in higher layers. A comparison between our calculations and the vertical abundance profiles and surface maps derived by magnetic Doppler imaging reveals that equilibrium stratifications are in a number of cases consistent with the main trends inferred from observed spectra. However, it is not clear whether such equilibrium solutions will ever be reached during the evolution of an Ap star.Comment: 7 pages, 6 figures, the paper will be published in Astronomy & Astrophysics, on November 200

    Rebuilding the Cepheid Distance Scale I: A Global Analysis of Cepheid Mean Magnitudes

    Full text link
    We develop a statistical method for using multicolor photometry to determine distances using Cepheid variables including the effects of temperature, extinction, and metallicity and apply it to UBVRIJHK photometry of 694 Cepheids in 17 galaxies. We derive homogeneous distance, extinction and uncertainty estimates for four models, starting from the standard extragalactic method and then adding the physical effects of temperature distributions, extinction distributions, requiring positive definite extinctions, and metallicity. While we find general agreement with published distances when we make similar systematic assumptions, there is a clear problem in the standard distances because they require Cepheids with negative extinctions, particularly in low metallicity galaxies, unless the mean LMC extinction exceeds E(B-V) > 0.25. The problem can be explained by the physically expected metallicity dependence of the Cepheid distance scale, where metal-poor Cepheids are hotter and fainter than metal-rich Cepheids. For V and I we found that the mean magnitude change is -0.14 +/- 0.14 mag/dex and the mean color change is 0.13 +/- 0.04 mag/dex, with the change in color dominating the change in distance. The effect on Type Ia supernova estimates of the Hubble constant is dramatic because most were found in the metal poor galaxies with the bluest Cepheids. The Type Ia Multi-color Light Curve Shape (MLCS) method estimate for H_0 formally rises from 69 +/- 8 km/s Mpc to 80 +/- 6 km/s Mpc with the metallicity correction.Comment: 54 pages, 7 figures, 4 tables, submitted to Ap

    Characterisation of the magnetic field of the Herbig Be star HD 200775

    Full text link
    After our recent discovery of four magnetic Herbig stars, we have decided to study in detail one of them, HD 200775, to determine if its magnetic topology is similar to that of the main sequence magnetic stars. With this aim, we monitored this star in Stokes I and V over more than two years, using the new spectropolarimeters ESPaDOnS at CFHT, and Narval at TBL. Using our data, we find that HD 200775 is a double-lined spectroscopic binary system, whose secondary seems similar, in temperature, to the primary. We determine the luminosity ratio of the system, and using the luminosity of the system found in literature, we derive the luminosity of both stars. From our measurements of the radial velocities of both stars we determine the ephemeris and the orbital parameters of the system. We have fitted 30 Stokes V profiles simultaneously, using a chi2 minimisation method, with a decentered-dipole model. The best-fit model provides a rotation period of 4.3281 d an inclination angle of 60 degrees, and a magnetic obliquity angle of 125 degrees. The polar strength of the magnetic dipole field is 1000 G, which is decentered by 0.05 R* from the center of the star. The derived magnetic field model is qualitatively identical to those commonly observed in the Ap/Bp stars, which bring strong argument in favour of the fossil field hypothesis, to explain the origin of the magnetic fields in the main sequence Ap/Bp stars. Our determination of the inclination of the rotation axis leads to a radius of the primary which is smaller than that derived from the HR diagram position. This can be explained by a larger intrinsic luminosity of the secondary relative to the primary, due to a larger circumstellar extinction of the secondary relative to the primary.Comment: Accepted for publication in MNRAS, 14 pages, 10 figure

    The Hubble Space Telescope Extragalactic Distance Scale Key Project. X. The Cepheid Distance to NGC 7331

    Full text link
    The distance to NGC 7331 has been derived from Cepheid variables observed with HST/WFPC2, as part of the Extragalactic Distance Scale Key Project. Multi-epoch exposures in F555W (V) and F814W (I), with photometry derived independently from DoPHOT and DAOPHOT/ALLFRAME programs, were used to detect a total of 13 reliable Cepheids, with periods between 11 and 42 days. The relative distance moduli between NGC 7331 and the LMC, imply an extinction to NGC 7331 of A_V = 0.47+-0.15 mag, and an extinction-corrected distance modulus to NGC 7331 of 30.89+-0.14(random) mag, equivalent to a distance of 15.1 Mpc. There are additional systematic uncertainties in the distance modulus of +-0.12 mag due to the calibration of the Cepheid Period-Luminosity relation, and a systematic offset of +0.05+-0.04 mag if we applied the metallicity correction inferred from the M101 results of Kennicutt et al 1998.Comment: To be published in The Astrophysical Journal, 1998 July 1, v501 note: Figs 1 and 2 (JPEG files) and Fig 7 (multipage .eps file) need to be viewed/printed separatel

    The contribution of microlensing surveys to the distance scale

    Full text link
    In the early nineties several teams started large scale systematic surveys of the Magellanic Clouds and the Galactic Bulge to search for microlensing effects. As a by product, these groups have created enormous time-series databases of photometric measurements of stars with a temporal sampling duration and accuracy which are unprecedented. They provide the opportunity to test the accuracy of primary distance indicators, such as Cepheids, RRLyrae stars, the detached eclipsing binaries, or the luminosity of the red clump. We will review the contribution of the microlensing surveys to the understanding of the physics of the primary distance indicators, recent differential studies and direct distance determinations to the Magellanic Clouds and the Galactic Bulge.Comment: Invited review article to appear in: `Post-Hipparcos Cosmic Candles', A. Heck & F. Caputo (Eds), Kluwer Academic Publ., Dordrecht, in press. 21 pages; uses Kluwer's crckapb.sty LaTeX style file, enclose

    The PL calibration for Milky Way Cepheids and its implications for the distance scale

    Full text link
    The rationale behind recent calibrations of the Cepheid PL relation using the Wesenheit formulation is reviewed and reanalyzed, and it is shown that recent conclusions regarding a possible change in slope of the PL relation for short-period and long-period Cepheids are tied to a pathological distribution of HST calibrators within the instability strip. A recalibration of the period-luminosity relation is obtained using Galactic Cepheids in open clusters and groups, the resulting relationship, described by log L/L_sun = 2.415(+-0.035) + 1.148(+-0.044)log P, exhibiting only the moderate scatter expected from color spread within the instability strip. The relationship is confirmed by Cepheids with HST parallaxes, although without the need for Lutz-Kelker corrections, and in general by Cepheids with revised Hipparcos parallaxes, albeit with concerns about the cited precisions of the latter. A Wesenheit formulation of Wv = -2.259(+-0.083) - 4.185(+-0.103)log P for Galactic Cepheids is tested successfully using Cepheids in the inner regions of the galaxy NGC 4258, confirming the independent geometrical distance established for the galaxy from OH masers. Differences between the extinction properties of interstellar and extragalactic dust may yet play an important role in the further calibration of the Cepheid PL relation and its application to the extragalactic distance scale.Comment: Accepted for Publication (Astrophysics & Space Science
    • …
    corecore