231 research outputs found

    The state of the focus and image quality of the Spitzer Space Telescope as measured in orbit

    Get PDF
    We describe the process by which the NASA Spitzer Space Telescope (SST) Cryogenic Telescope Assembly (CTA) was brought into focus after arrival of the spacecraft in orbit. The ground rules of the mission did not allow us to make a conventional focus sweep. A strategy was developed to determine the focus position through a program of passive imaging during the observatory cool-down time period. A number of analytical diagnostic tools were developed to facilitate evaluation of the state of the CTA focus. Initially, these tools were used to establish the in-orbit focus position. These tools were then used to evaluate the effects of an initial small exploratory move that verified the health and calibration of the secondary mirror focus mechanism. A second large move of the secondary mirror was then commanded to bring the telescope into focus. We present images that show the CTA Point Spread Function (PSF) at different channel wavelengths and demonstrate that the telescope achieved diffraction limited performance at a wavelength of 5.5 μm, somewhat better than the level-one requirement

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    Measurement of the Branching Fraction of the Decay B+π+π+ν\boldsymbol{B^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_\ell} in Fully Reconstructed Events at Belle

    Get PDF
    We present an analysis of the exclusive B+π+π+νB^{+}\to\pi^{+}\pi^{-}\ell^{+}\nu_{\ell} decay, where \ell represents an electron or a muon, with the assumption of charge-conjugation symmetry and lepton universality. The analysis uses the full Υ(4S)\Upsilon(4S) data sample collected by the Belle detector, corresponding to 711 fb1^{-1} of integrated luminosity. We select the events by fully reconstructing one BB meson in hadronic decay modes, subsequently determining the properties of the other BB meson. We extract the signal yields using a binned maximum-likelihood fit to the missing-mass squared distribution in bins of the invariant mass of the two pions or the momentum transfer squared. We measure a total branching fraction of B(B+π+π+ν)=[22.71.6+1.9(stat)±3.5(syst)]×105{{\cal B}(B^{+}\to \pi^{+}\pi^{-}\ell^{+}\nu_{\ell})= [22.7 ^{+1.9}_{-1.6} (\mathrm{stat}) \pm 3.5(\mathrm{syst}) ]\times 10^{-5}}, where the uncertainties are statistical and systematic, respectively. This result is the first reported measurement of this decay.Comment: 23 pages, 19 figure

    Binary Willshaw learning yields high synaptic capacity for long-term familiarity memory

    Full text link
    We investigate from a computational perspective the efficiency of the Willshaw synaptic update rule in the context of familiarity discrimination, a binary-answer, memory-related task that has been linked through psychophysical experiments with modified neural activity patterns in the prefrontal and perirhinal cortex regions. Our motivation for recovering this well-known learning prescription is two-fold: first, the switch-like nature of the induced synaptic bonds, as there is evidence that biological synaptic transitions might occur in a discrete stepwise fashion. Second, the possibility that in the mammalian brain, unused, silent synapses might be pruned in the long-term. Besides the usual pattern and network capacities, we calculate the synaptic capacity of the model, a recently proposed measure where only the functional subset of synapses is taken into account. We find that in terms of network capacity, Willshaw learning is strongly affected by the pattern coding rates, which have to be kept fixed and very low at any time to achieve a non-zero capacity in the large network limit. The information carried per functional synapse, however, diverges and is comparable to that of the pattern association case, even for more realistic moderately low activity levels that are a function of network size.Comment: 20 pages, 4 figure

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Angular analysis of B0K(892)0+B^0 \to K^\ast(892)^0 \ell^+ \ell^-

    Full text link
    We present a measurement of angular observables, P4P_4', P5P_5', P6P_6', P8P_8', in the decay B0K(892)0+B^0 \to K^\ast(892)^0 \ell^+ \ell^-, where +\ell^+\ell^- is either e+ee^+e^- or μ+μ\mu^+\mu^-. The analysis is performed on a data sample corresponding to an integrated luminosity of 711 fb1711~\mathrm{fb}^{-1} containing 772×106772\times 10^{6} BBˉB\bar B pairs, collected at the Υ(4S)\Upsilon(4S) resonance with the Belle detector at the asymmetric-energy e+ee^+e^- collider KEKB. Four angular observables, P4,5,6,8P_{4,5,6,8}' are extracted in five bins of the invariant mass squared of the lepton system, q2q^2. We compare our results for P4,5,6,8P_{4,5,6,8}' with Standard Model predictions including the q2q^2 region in which the LHCb collaboration reported the so-called P5P_5' anomaly.Comment: Conference paper for LHC Ski 2016. SM prediction for P6P_{6}' corrected and reference for arXiv:1207.2753 adde
    corecore