64,385 research outputs found

    The high-energy gamma-ray light curve of PSR B1259 -63

    Get PDF
    The high-energy gamma-ray light curve of the binary system PSR B1259 -63, is computed using the approach that successfully predicted the spectrum at periastron. The simultaneous INTEGRAL and H.E.S.S. spectra taken 16 days after periastron currently permit both a model with dominant radiative losses, high pulsar wind Lorentz factor and modest efficiency as well as one with dominant adiabatic losses, a slower wind and higher efficiency. In this paper we shown how the long-term light curve may help to lift this degeneracy.Comment: 4 pages, to appear in proceedings of: Astrophysical Sources of High Energy Particles and Radiation, Torun (2005

    Quasar Microlensing: when compact masses mimic smooth matter

    Full text link
    The magnification induced by gravitational microlensing is sensitive to the size of a source relative to the Einstein radius, the natural microlensing scale length. This paper investigates the effect of source size in the case where the microlensing masses are distributed with a bimodal mass function, with solar mass stars representing the normal stellar masses, and smaller masses (down to 8.5×10−58.5\times 10^{-5}M⊙_\odot) representing a dark matter component. It is found that there exists a critical regime where the dark matter is initially seen as individual compact masses, but with an increasing source size the compact dark matter acts as a smooth mass component. This study reveals that interpretation of microlensing light curves, especially claims of small mass dark matter lenses embedded in an overall stellar population, must consider the important influence of the size of the source.Comment: 6 pages, to appear in ApJ. As ever, quality of figures reduce

    Strategies for Systemic Change:Youth Community Organizing to Disruptthe School-to-Prison Nexus

    Get PDF
    The school disciplinary landscape across the United States changed significantly through the enactment of policies that criminalize students’ behaviors during the 1990s and 2000s. Schools began to involve the police and criminal legal system in school disciplinary issues that used to be handled by school administrators. This shift led youth of Color1 to increasingly come into contact with the juvenile legal system through school suspensions, expulsions, and referrals to alternative schools—what we characterize as the school-toprison nexus. Conceptualizing the school-to-prison pipeline as a nexus, or interlocking system of power over youth, allows us to understand how the criminalization of youth is a systemic problem that demands structural change and interventions across multiple levels of analysis and settings, including local schools, school districts, police departments, and state policies. Although important research has documented the ways that Black and Latino youth are referred to the juvenile legal system through punitive school policies, there has been less attention to the actions youth are taking to critique and dismantle these policies. Youth community organizing (YCO) against the school-to-prison nexus represents an arena of youth activism that deserves further attention and analysis. In this chapter, we define YCO as groups that create spaces for young people to think critically about their everyday social conditions, identify root causes of social problems, and build political power and voice to create policy solutions and change in their communities (Ginwright, Noguera, & Cammarota, 2006; Kirshner, 2015; Watts, Griffith, & Abdul- Adil, 1999)

    A simplified model of the Martian atmosphere - Part 1: a diagnostic analysis

    Get PDF
    In this paper we derive a reduced-order approximation to the vertical and horizontal structure of a simplified model of the baroclinically unstable Martian atmosphere. The original model uses the full hydrostatic primitive equations on a sphere, but has only highly simplified schemes to represent the detailed physics of the Martian atmosphere, e.g. forcing towards a plausible zonal mean temperature state using Newtonian cooling. Three different norms are used to monitor energy conversion processes in the model and are then compared. When four vertical modes (the barotropic and first three baroclinic modes) are retained in the reduced-order approximation, the correlation norm captures approximately 90% of the variance, while the kinetic energy and total energy norms capture approximately 83% and 78% of the kinetic and total energy respectively. We show that the leading order Proper Orthogonal Decomposition (POD) modes represent the dominant travelling waves in the baroclinically-unstable, winter hemisphere. In part 2 of our study we will develop a hierarchy of truncated POD-Galerkin expansions of the model equations using up to four vertical modes

    Seeing Star Formation Regions with Gravitational Microlensing

    Full text link
    We qualitatively study the effects of gravitational microlensing on our view of unresolved extragalactic star formation regions. Using a general gravitational microlensing configuration, we perform a number of simulations that reveal that specific imprints of the star forming region are imprinted, both photometrically and spectroscopically, upon observations. Such observations have the potential to reveal the nature and size of these star forming regions, through the degree of variability observed in a monitoring campaign, and hence resolve the star formation regions in distant galaxies which are too small to be probed via more standard techniques.Comment: 7 pages, 8 figures, ApJ accepte

    The inner dark matter distribution of the Cosmic Horseshoe (J1148+1930) with gravitational lensing and dynamics

    Full text link
    We present a detailed analysis of the inner mass structure of the Cosmic Horseshoe (J1148+1930) strong gravitational lens system observed with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). In addition to the spectacular Einstein ring, this systems shows a radial arc. We obtained the redshift of the radial arc counter image zs,r=1.961±0.001z_\text{s,r} = 1.961 \pm 0.001 from Gemini observations. To disentangle the dark and luminous matter, we consider three different profiles for the dark matter distribution: a power-law profile, the NFW, and a generalized version of the NFW profile. For the luminous matter distribution, we base it on the observed light distribution that is fitted with three components: a point mass for the central light component resembling an active galactic nucleus, and the remaining two extended light components scaled by a constant M/L. To constrain the model further, we include published velocity dispersion measurements of the lens galaxy and perform a self-consistent lensing and axisymmetric Jeans dynamical modeling. Our model fits well to the observations including the radial arc, independent of the dark matter profile. Depending on the dark matter profile, we get a dark matter fraction between 60 % and 70 %. With our composite mass model we find that the radial arc helps to constrain the inner dark matter distribution of the Cosmic Hoseshoe independently of the dark matter profile.Comment: 19 pages, 14 figures, 8 tables, submitted to A&

    To what extent does severity of loneliness vary among different mental health diagnostic groups: A cross-sectional study.

    Get PDF
    Loneliness is a common and debilitating problem in individuals with mental health disorders. However, our knowledge on severity of loneliness in different mental health diagnostic groups and factors associated with loneliness is poor, thus limiting the ability to target and improve loneliness interventions. The current study investigated the association between diagnoses and loneliness and explored whether psychological and social factors were related to loneliness. This study employed a cross-sectional design using data from a completed study which developed a measure of social inclusion. It included 192 participants from secondary, specialist mental health services with a primary diagnosis of psychotic disorders (n = 106), common mental disorders (n = 49), or personality disorders (n = 37). The study explored differences in loneliness between these broad diagnostic groups, and the relationship to loneliness of: affective symptoms, social isolation, perceived discrimination, and internalized stigma. The study adhered to the STROBE checklist for observational research. People with common mental disorders (MD = 3.94, CI = 2.15 to 5.72, P < 0.001) and people with personality disorders (MD = 4.96, CI = 2.88 to 7.05, P < 0.001) reported higher levels of loneliness compared to people with psychosis. These differences remained significant after adjustment for all psychological and social variables. Perceived discrimination and internalized stigma were also independently associated with loneliness and substantially contributed to a final explanatory model. The severity of loneliness varies between different mental health diagnostic groups. Both people with common mental disorders and personality disorders reported higher levels of loneliness than people with psychosis. Addressing perceived mental health discrimination and stigma may help to reduce loneliness
    • 

    corecore