3,167 research outputs found

    Entangled light pulses from single cold atoms

    Get PDF
    The coherent interaction between a laser-driven single trapped atom and an optical high-finesse resonator allows to produce entangled multi-photon light pulses on demand. The mechanism is based on the mechanical effect of light. The degree of entanglement can be controlled through the parameters of the laser excitation. Experimental realization of the scheme is within reach of current technology. A variation of the technique allows for controlled generation of entangled subsequent pulses, with the atomic motion serving as intermediate memory of the quantum state.Comment: 4 pages, 3 figures, revised version (new scheme for generation of subsequent pairs of entangled pulses included). Accepted for publication in Phys. Rev. Let

    Generation of unpredictable time series by a Neural Network

    Full text link
    A perceptron that learns the opposite of its own output is used to generate a time series. We analyse properties of the weight vector and the generated sequence, like the cycle length and the probability distribution of generated sequences. A remarkable suppression of the autocorrelation function is explained, and connections to the Bernasconi model are discussed. If a continuous transfer function is used, the system displays chaotic and intermittent behaviour, with the product of the learning rate and amplification as a control parameter.Comment: 11 pages, 14 figures; slightly expanded and clarified, mistakes corrected; accepted for publication in PR

    Cluster Dynamics for Randomly Frustrated Systems with Finite Connectivity

    Full text link
    In simulations of some infinite range spin glass systems with finite connectivity, it is found that for any resonable computational time, the saturatedenergy per spin that is achieved by a cluster algorithm is lowered in comparison to that achieved by Metropolis dynamics.The gap between the average energies obtained from these two dynamics is robust with respect to variations of the annealing schedule. For some probability distribution of the interactions the ground state energy is calculated analytically within the replica symmetry assumptionand is found to be saturated by a cluster algorithm.Comment: Revtex, 4 pages with 3 figure

    Coherent generation of EPR-entangled light pulses mediated by a single trapped atom

    Get PDF
    We show that a single, trapped, laser-driven atom in a high-finesse optical cavity allows for the quantum-coherent generation of entangled light pulses on demand. Schemes for generating simultaneous and temporally separated pulse pairs are proposed. The mechanical effect of the laser excitation on the quantum motion of the cold trapped atom mediates the entangling interaction between two cavity modes and between the two subsequent pulses, respectively. The entanglement is of EPR-type, and its degree can be controlled through external parameters. At the end of the generation process the atom is decorrelated from the light field. Possible experimental implementations of the proposals are discussed.Comment: 11 pages, 4 figure

    The most creative organization in the world? The BBC, 'creativity' and managerial style

    Get PDF
    The managerial styles of two BBC directors-general, John Birt and Greg Dyke, have often been contrasted but not so far analysed from the perspective of their different views of 'creative management'. This article first addresses the orthodox reading of 'Birtism'; second, it locates Dyke's 'creative' turn in the wider context of fashionable neo-management theory and UK government creative industries policy; third, it details Dyke's drive to change the BBC's culture; and finally, it concludes with some reflections on the uncertainties inherent in managing a creative organisation

    Shannon Meets Carnot: Generalized Second Thermodynamic Law

    Full text link
    The classical thermodynamic laws fail to capture the behavior of systems with energy Hamiltonian which is an explicit function of the temperature. Such Hamiltonian arises, for example, in modeling information processing systems, like communication channels, as thermal systems. Here we generalize the second thermodynamic law to encompass systems with temperature-dependent energy levels, dQ=TdS+dTdQ=TdS+dT, where denotes averaging over the Boltzmann distribution and reveal a new definition to the basic notion of temperature. This generalization enables to express, for instance, the mutual information of the Gaussian channel as a consequence of the fundamental laws of nature - the laws of thermodynamics

    Numerical Results for Ground States of Mean-Field Spin Glasses at low Connectivities

    Full text link
    An extensive list of results for the ground state properties of spin glasses on random graphs is presented. These results provide a timely benchmark for currently developing theoretical techniques based on replica symmetry breaking that are being tested on mean-field models at low connectivity. Comparison with existing replica results for such models verifies the strength of those techniques. Yet, we find that spin glasses on fixed-connectivity graphs (Bethe lattices) exhibit a richer phenomenology than has been anticipated by theory. Our data prove to be sufficiently accurate to speculate about some exact results.Comment: 4 pages, RevTex4, 5 ps-figures included, related papers available at http://www.physics.emory.edu/faculty/boettcher

    An efficient CDMA decoder for correlated information sources

    Full text link
    We consider the detection of correlated information sources in the ubiquitous Code-Division Multiple-Access (CDMA) scheme. We propose a message-passing based scheme for detecting correlated sources directly, with no need for source coding. The detection is done simultaneously over a block of transmitted binary symbols (word). Simulation results are provided demonstrating a substantial improvement in bit-error-rate in comparison with the unmodified detector and the alternative of source compression. The robustness of the error-performance improvement is shown under practical model settings, including wrong estimation of the generating Markov transition matrix and finite-length spreading codes.Comment: 11 page

    Statistical properties of genealogical trees

    Get PDF
    We analyse the statistical properties of genealogical trees in a neutral model of a closed population with sexual reproduction and non-overlapping generations. By reconstructing the genealogy of an individual from the population evolution, we measure the distribution of ancestors appearing more than once in a given tree. After a transient time, the probability of repetition follows, up to a rescaling, a stationary distribution which we calculate both numerically and analytically. This distribution exhibits a universal shape with a non-trivial power law which can be understood by an exact, though simple, renormalization calculation. Some real data on human genealogy illustrate the problem, which is relevant to the study of the real degree of diversity in closed interbreeding communities.Comment: Accepted for publication in Phys. Rev. Let

    Interplay of composition, structure, magnetism, and superconductivity in SmFeAs1-xPxO1-y

    Full text link
    Polycrystalline samples and single crystals of SmFeAs1-xPxO1-y were synthesized and grown employing different synthesis methods and annealing conditions. Depending on the phosphorus and oxygen content, the samples are either magnetic or superconducting. In the fully oxygenated compounds the main impact of phosphorus substitution is to suppress the N\'eel temperature TN of the spin density wave (SDW) state, and to strongly reduce the local magnetic field in the SDW state, as deduced from muon spin rotation measurements. On the other hand the superconducting state is observed in the oxygen deficient samples only after heat treatment under high pressure. Oxygen deficiency as a result of synthesis at high pressure brings the Sm-O layer closer to the superconducting As/P-Fe-As/P block and provides additional electron transfer. Interestingly, the structural modifications in response to this variation of the electron count are significantly different when phosphorus is partly substituting arsenic. Point contact spectra are well described with two superconducting gaps. Magnetic and resistance measurements on single crystals indicate an in-plane magnetic penetration depth of 200 nm and an anisotropy of the upper critical field slope of 4-5. PACS number(s): 74.70.Xa, 74.62.Bf, 74.25.-q, 81.20.-nComment: 36 pages, 13 figures, 2 table
    • 

    corecore