342 research outputs found

    A Conserved LIM Protein That Affects Muscular Adherens Junction Integrity and Mechanosensory Function in Caenorhabditis elegans

    Get PDF
    We describe here the molecular and functional characterization of the Caenorhabditis elegans unc-97 gene, whose gene product constitutes a novel component of muscular adherens junctions. UNC-97 and homologues from several other species define the PINCH family, a family of LIM proteins whose modular composition of five LIM domains implicates them as potential adapter molecules. unc-97 expression is restricted to tissue types that attach to the hypodermis, specifically body wall muscles, vulval muscles, and mechanosensory neurons. In body wall muscles, the UNC-97 protein colocalizes with the Ξ²-integrin PAT-3 to the focal adhesion-like attachment sites of muscles. Partial and complete loss-of-function studies demonstrate that UNC-97 affects the structural integrity of the integrin containing muscle adherens junctions and contributes to the mechanosensory functions of touch neurons. The expression of a Drosophila homologue of unc-97 in two integrin containing cell types, muscles, and muscle-attached epidermal cells, suggests that unc-97 function in adherens junction assembly and stability has been conserved across phylogeny. In addition to its localization to adherens junctions UNC-97 can also be detected in the nucleus, suggesting multiple functions for this LIM domain protein

    DAF-16/FOXO employs the chromatin remodeller SWI/SNF to promote stress resistance and longevity

    Get PDF
    Organisms are constantly challenged by stresses and privations and require adaptive responses for their survival. The transcription factor DAF-16/FOXO is central nexus in these responses, but despite its importance little is known about how it regulates its target genes. Proteomic identification of DAF-16/FOXO binding partners in Caenorhabditis elegans and their subsequent functional evaluation by RNA interference (RNAi) revealed several candidate DAF-16/FOXO cofactors, most notably the chromatin remodeller SWI/SNF. DAF-16/FOXO and SWI/SNF form a complex and globally colocalize at DAF-16/FOXO target promoters. We show that specifically for gene-activation, DAF-16/FOXO depends on SWI/SNF, facilitating SWI/SNF recruitment to target promoters, in order to activate transcription by presumed remodelling of local chromatin. For the animal, this translates into an essential role of SWI/SNF for DAF-16/FOXO-mediated processes, i.e. dauer formation, stress resistance, and the promotion of longevity. Thus we give insight into the mechanisms of DAF-16/FOXO-mediated transcriptional regulation and establish a critical link between ATP-dependent chromatin remodelling and lifespan regulation

    UCbase & miRfunc: a database of ultraconserved sequences and microRNA function

    Get PDF
    Four hundred and eighty-one ultraconserved sequences (UCRs) longer than 200 bases were discovered in the genomes of human, mouse and rat. These are DNA sequences showing 100% identity among the three species. UCRs are frequently located at genomic regions involved in cancer, differentially expressed in human leukemias and carcinomas and in some instances regulated by microRNAs (miRNAs). Here we present UCbase & miRfunc, the first database which provides ultraconserved sequences data and shows miRNA function. Also, it links UCRs and miRNAs with the related human disorders and genomic properties. The current release contains over 2000 sequences from three species (human, mouse and rat). As a web application, UCbase & miRfunc is platform independent and it is accessible at http://microrna.osu.edu/.UCbase4

    Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood

    Get PDF
    Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals

    Prognostic Significance of miR-181b and miR-21 in Gastric Cancer Patients Treated with S-1/Oxaliplatin or Doxifluridine/Oxaliplatin

    Get PDF
    Background: The goal of this study is to evaluate the effectiveness of S-1/Oxaliplatin vs. Doxifluridine/Oxaliplatin regimen and to identify miRNAs as potential prognostic biomarkers in gastric cancer patients. The expression of candidate miRNAs was quantified from fifty-five late stage gastric cancer FFPE specimens. Experimental Design: Gastric cancer patients with KPS>70 were recruited for the trial. The control group was treated with 400 mg/twice/day Doxifluridine plus i.v. with Oxaliplatin at 130 mg/m 2/first day/4 week cycle. The testing group was treated with S-1 at 40 mg/twice/day/4 week cycle plus i.v. with Oxaliplatin at 130 mg/m 2/first day/4 week cycle. Total RNAs were extracted from normal and gastric tumor specimens. The levels of miRNAs were quantified using real time qRT-PCR expression analysis. Results: The overall objective response rate (CR+PR) of patients treated with S-1/Oxaliplatin was 33.3% (CR+PR) vs. 17.6% (CR+PR) with Doxifluridine/Oxaliplatin for advanced stage gastric cancer patients. The average overall survival for patients treated with S-1/Oxaliplatin was 7.80 month vs. 7.30 month with patients treated with Doxifluridine/Oxaliplatin. The expression of miR-181b (P = 0.022) and miR-21 (P = 0.0029) was significantly overexpressed in gastric tumors compared to normal gastric tissues. Kaplan-Meier survival analysis revealed that low levels of miR-21 expression (Log rank test, hazard ratio: 0.17, CI = 0.06-0.45; P = 0.0004) and miR-181b (Log rank test, hazard ratio: 0.37, CI = 0.16-0.87; P = 0.018) are closely associated with better patient's overall survival for both S-1 and Doxifluridine based regimens. Conclusion: Patients treated with S-1/Oxaliplatin had a better response than those treated with Doxifluridine/Oxaliplatin. miR-21 and miR-181b hold great potential as prognostic biomarkers in late stage gastric cancer. Β© 2011 Jiang et al

    MiR-RACE, a New Efficient Approach to Determine the Precise Sequences of Computationally Identified Trifoliate Orange (Poncirus trifoliata) MicroRNAs

    Get PDF
    BACKGROUND: Among the hundreds of genes encoding miRNAs in plants reported, much more were predicted by numerous computational methods. However, unlike protein-coding genes defined by start and stop codons, the ends of miRNA molecules do not have characteristics that can be used to define the mature miRNAs exactly, which made computational miRNA prediction methods often cannot predict the accurate location of the mature miRNA in a precursor with nucleotide-level precision. To our knowledge, there haven't been reports about comprehensive strategies determining the precise sequences, especially two termini, of these miRNAs. METHODS: In this study, we report an efficient method to determine the precise sequences of computationally predicted microRNAs (miRNAs) that combines miRNA-enriched library preparation, two specific 5' and 3' miRNA RACE (miR-RACE) PCR reactions, and sequence-directed cloning, in which the most challenging step is the two specific gene specific primers designed for the two RACE reactions. miRNA-mediated mRNA cleavage by RLM-5' RACE and sequencing were carried out to validate the miRNAs detected. Real-time PCR was used to analyze the expression of each miRNA. RESULTS: The efficiency of this newly developed method was validated using nine trifoliate orange (Poncirus trifoliata) miRNAs predicted computationally. The miRNAs computationally identified were validated by miR-RACE and sequencing. Quantitative analysis showed that they have variable expression. Eight target genes have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in Poncirus trifoliate. CONCLUSION: The efficient and powerful approach developed herein can be successfully used to validate the sequences of miRNAs, especially the termini, which depict the complete miRNA sequence in the computationally predicted precursor

    microPIR: An Integrated Database of MicroRNA Target Sites within Human Promoter Sequences

    Get PDF
    Background: microRNAs are generally understood to regulate gene expression through binding to target sequences within 39-UTRs of mRNAs. Therefore, computational prediction of target sites is usually restricted to these gene regions. Recent experimental studies though have suggested that microRNAs may alternatively modulate gene expression by interacting with promoters. A database of potential microRNA target sites in promoters would stimulate research in this field leading to more understanding of complex microRNA regulatory mechanism. Methodology: We developed a database hosting predicted microRNA target sites located within human promoter sequences and their associated genomic features, called microPIR (microRNA-Promoter Interaction Resource). microRNA seed sequences were used to identify perfect complementary matching sequences in the human promoters and the potential target sites were predicted using the RNAhybrid program..15 million target sites were identified which are located within 5000 bp upstream of all human genes, on both sense and antisense strands. The experimentally confirmed argonaute (AGO) binding sites and EST expression data including the sequence conservation across vertebrate species of each predicted target are presented for researchers to appraise the quality of predicted target sites. The microPIR database integrates various annotated genomic sequence databases, e.g. repetitive elements, transcription factor binding sites, CpG islands, and SNPs, offering users the facility to extensively explore relationships among target sites and other genomi

    A 3β€²-Untranslated Region (3β€²UTR) Induces Organ Adhesion by Regulating miR-199a* Functions

    Get PDF
    Mature microRNAs (miRNAs) are single-stranded RNAs of 18–24 nucleotides that repress post-transcriptional gene expression. However, it is unknown whether the functions of mature miRNAs can be regulated. Here we report that expression of versican 3β€²UTR induces organ adhesion in transgenic mice by modulating miR-199a* activities. The study was initiated by the hypothesis that the non-coding 3β€²UTR plays a role in the regulation of miRNA function. Transgenic mice expressing a construct harboring the 3β€²UTR of versican exhibits the adhesion of organs. Computational analysis indicated that a large number of microRNAs could bind to this fragment potentially including miR-199a*. Expression of versican and fibronectin, two targets of miR-199a*, are up-regulated in transgenic mice, suggesting that the 3β€²UTR binds and modulates miR-199a* activities, freeing mRNAs of versican and fibronectin from being repressed by miR-199a*. Confirmation of the binding was performed by PCR using mature miR-199a* as a primer and the targeting was performed by luciferase assays. Enhanced adhesion by expression of the 3β€²UTR was confirmed by in vitro assays. Our results demonstrated that upon arrival in cytoplasm, miRNA activities can be modulated locally by the 3β€²UTR. Our assay may be developed as sophisticated approaches for studying the mutual regulation of miRNAs and mRNAs in vitro and in vivo. We anticipate that expression of the 3β€²UTR may be an approach in the development of gene therapy

    A Ξ²-Catenin-Dependent Wnt Pathway Mediates Anteroposterior Axon Guidance in C. elegans Motor Neurons

    Get PDF
    Wnts are secreted glycoproteins that regulate diverse aspects of development, including cell proliferation, cell fate specification and differentiation. More recently, Wnts have been shown to direct axon guidance in vertebrates, flies and worms. However, little is known about the intracellular signaling pathways downstream of Wnts in axon guidance.Here we show that the posterior C. elegans Wnt protein LIN-44 repels the axons of the adjacent D-type motor neurons by activating its receptor LIN-17/Frizzled on the neurons. Moreover, mutations in mig-5/Disheveled, gsk-3, pry-1/Axin, bar-1/beta-catenin and pop-1/TCF, also cause disrupted D-type axon pathfinding. Reduced BAR-1/beta-catenin activity in D-type axons leads to undergrowth of axons, while stabilization of BAR-1/beta-catenin in a lin-23/SCF(beta-TrCP) mutant results in an overextension phenotype.Together, our data provide evidence that Wnt-mediated axon guidance can be transduced through a beta-catenin-dependent pathway
    • …
    corecore