51 research outputs found

    Stress response function of a granular layer: quantitative comparison between experiments and isotropic elasticity

    Full text link
    We measured the vertical pressure response function of a layer of sand submitted to a localized normal force at its surface. We found that this response profile depends on the way the layer has been prepared: all profiles show a single centered peak whose width scales with the thickness of the layer, but a dense packing gives a wider peak than a loose one. We calculate the prediction of isotropic elastic theory in presence of a bottom boundary and compare it to the data. We found that the theory gives the right scaling and the correct qualitative shape, but fails to really fit the data.Comment: 22 pages, 9 figures, submitted to Euro. Phys. J.

    From the stress response function (back) to the sandpile `dip'

    Full text link
    We relate the pressure `dip' observed at the bottom of a sandpile prepared by successive avalanches to the stress profile obtained on sheared granular layers in response to a localized vertical overload. We show that, within a simple anisotropic elastic analysis, the skewness and the tilt of the response profile caused by shearing provide a qualitative agreement with the sandpile dip effect. We conclude that the texture anisotropy produced by the avalanches is in essence similar to that induced by a simple shearing -- albeit tilted by the angle of repose of the pile. This work also shows that this response function technique could be very well adapted to probe the texture of static granular packing.Comment: 8 pages, 8 figures, accepted version to appear in Eur. Phys. J.

    Green's Function Measurements of Force Transmission in 2D Granular Materials

    Full text link
    We describe experiments that probe the response to a point force of 2D granular systems under a variety of conditions. Using photoelastic particles to determine forces at the grain scale, we experimentally show that disorder, packing structure, friction and texture significantly affect the average force response in granular systems. For packings with weak disorder, the mean forces propagate primarily along lattice directions. The width of the response along these preferred directions grows with depth, increasingly so as the disorder of the system grows. Also, as the disorder increases, the two propagation directions of the mean force merge into a single direction. The response function for the mean force in the most strongly disordered system is quantitatively consistent with an elastic description for forces applied nearly normally to a surface. These observations are consistent with recent predictions of Bouchaud et al. and with the anisotropic elasticity models of Goldenberg and Goldhirsch. At this time, it is not possible to distinguish between these two models. The data do not support a diffusive picture, as in the q-model. This system with shear deformation is characterized by stress chains that are strongly oriented along an angle of 45 degrees, corresponding to the compressive direction of the shear deformation. In this case, the spatial correlation function for force has a range of only one particle size in the direction transverse to the chains, and varies as a power law in the direction of the chains, with an exponent of -0.81. The response to forces is strongest along the direction of the force chains, as expected. Forces applied in other directions are effectively refocused towards the strong force chain direction.Comment: 38 pages, 26 figures, added references and content, to appear in Physica

    Quantum partition noise of photo-created electron-hole pairs

    Full text link
    We show experimentally that even when no bias voltage is applied to a quantum conductor, the electronic quantum partition noise can be investigated using GHz radiofrequency irradiation of a reservoir. Using a Quantum Point Contact configuration as the ballistic conductor we are able to make an accurate determination of the partition noise Fano factor resulting from the photo-assisted shot noise. Applying both voltage bias and rf irradiation we are able to make a definitive quantitative test of the scattering theory of photo-assisted shot noise.Comment: 4 pages, 4 figure

    Elastic medium confined in a column versus the Janssen experiment

    Full text link
    We compute the stresses in an elastic medium confined in a vertical column, when the material is at the Coulomb threshold everywhere at the walls. Simulations are performed in 2 dimensions using a spring lattice, and in 3 dimensions, using Finite Element Method. The results are compared to the Janssen model and to experimental results for a granular material. The necessity to consider elastic anisotropy to render qualitatively the experimental findings is discussed

    Footprints in Sand: The Response of a Granular Material to Local Perturbations

    Full text link
    We experimentally determine ensemble-averaged responses of granular packings to point forces, and we compare these results to recent models for force propagation in a granular material. We used 2D granular arrays consisting of photoelastic particles: either disks or pentagons, thus spanning the range from ordered to disordered packings. A key finding is that spatial ordering of the particles is a key factor in the force response. Ordered packings have a propagative component that does not occur in disordered packings.Comment: 5 pages, 4 eps figures, Phys. Rev. Lett. 87, 035506 (2001

    Stress Transmission through Three-Dimensional Ordered Granular Arrays

    Full text link
    We measure the local contact forces at both the top and bottom boundaries of three-dimensional face-centered-cubic and hexagonal-close-packed granular crystals in response to an external force applied to a small area at the top surface. Depending on the crystal structure, we find markedly different results which can be understood in terms of force balance considerations in the specific geometry of the crystal. Small amounts of disorder are found to create additional structure at both the top and bottom surfaces.Comment: 9 pages including 9 figures (many in color) submitted to PR

    Shock waves in two-dimensional granular flow: effects of rough walls and polydispersity

    Get PDF
    We have studied the two-dimensional flow of balls in a small angle funnel, when either the side walls are rough or the balls are polydisperse. As in earlier work on monodisperse flows in smooth funnels, we observe the formation of kinematic shock waves/density waves. We find that for rough walls the flows are more disordered than for smooth walls and that shock waves generally propagate more slowly. For rough wall funnel flow, we show that the shock velocity and frequency obey simple scaling laws. These scaling laws are consistent with those found for smooth wall flow, but here they are cleaner since there are fewer packing-site effects and we study a wider range of parameters. For pipe flow (parallel side walls), rough walls support many shock waves, while smooth walls exhibit fewer or no shock waves. For funnel flows of balls with varying sizes, we find that flows with weak polydispersity behave qualitatively similar to monodisperse flows. For strong polydispersity, scaling breaks down and the shock waves consist of extended areas where the funnel is blocked completely.Comment: 11 pages, 15 figures; accepted for PR

    Scale invariance and universality of force networks in static granular matter

    Full text link
    Force networks form the skeleton of static granular matter. They are the key ingredient to mechanical properties, such as stability, elasticity and sound transmission, which are of utmost importance for civil engineering and industrial processing. Previous studies have focused on the global structure of external forces (the boundary condition), and on the probability distribution of individual contact forces. The disordered spatial structure of the force network, however, has remained elusive so far. Here we report evidence for scale invariance of clusters of particles that interact via relatively strong forces. We analyzed granular packings generated by molecular dynamics simulations mimicking real granular matter; despite the visual variation, force networks for various values of the confining pressure and other parameters have identical scaling exponents and scaling function, and thus determine a universality class. Remarkably, the flat ensemble of force configurations--a simple generalization of equilibrium statistical mechanics--belongs to the same universality class, while some widely studied simplified models do not.Comment: 15 pages, 4 figures; to appear in Natur

    Green's function probe of a static granular piling

    Full text link
    We present an experiment which aim is to investigate the mechanical properties of a static granular assembly. The piling is an horizontal 3D granular layer confined in a box, we apply a localized extra force at the surface and the spatial distribution of stresses at the bottom is obtained (the mechanical Green's function). For different types of granular media, we observe a linear pressure response which profile shows one peak centered at the vertical of the point of application. The peak's width increases linearly when increasing the depth. This green function seems to be in -at least- qualitative agreement with predictions of elastic theory.Comment: 9 pages, 3 .eps figures, submitted to PR
    • …
    corecore