9,538 research outputs found

    Bragg spectroscopy of trapped one dimensional strongly interacting bosons in optical lattices: Probing the cake-structure

    Full text link
    We study Bragg spectroscopy of strongly interacting one dimensional bosons loaded in an optical lattice plus an additional parabolic potential. We calculate the dynamic structure factor by using Monte Carlo simulations for the Bose-Hubbard Hamiltonian, exact diagonalizations and the results of a recently introduced effective fermionization (EF) model. We find that, due to the system's inhomogeneity, the excitation spectrum exhibits a multi-branched structure, whose origin is related to the presence of superfluid regions with different densities in the atomic distribution. We thus suggest that Bragg spectroscopy in the linear regime can be used as an experimental tool to unveil the shell structure of alternating Mott insulator and superfluid phases characteristic of trapped bosons.Comment: 7 pages, 4 figure

    On Fundamental Trade-offs of Device-to-Device Communications in Large Wireless Networks

    Get PDF
    This paper studies the gains, in terms of served requests, attainable through out-of-band device-to-device (D2D) video exchanges in large cellular networks. A stochastic framework, in which users are clustered to exchange videos, is introduced, considering several aspects of this problem: the video-caching policy, user matching for exchanges, aspects regarding scheduling and transmissions. A family of \emph{admissible protocols} is introduced: in each protocol the users are clustered by means of a hard-core point process and, within the clusters, video exchanges take place. Two metrics, quantifying the "local" and "global" fraction of video requests served through D2D are defined, and relevant trade-off regions involving these metrics, as well as quality-of-service constraints, are identified. A simple communication strategy is proposed and analyzed, to obtain inner bounds to the trade-off regions, and draw conclusions on the performance attainable through D2D. To this end, an analysis of the time-varying interference that the nodes experience, and tight approximations of its Laplace transform are derived.Comment: 33 pages, 9 figures. Updated version, to appear in IEEE Transactions on Wireless Communication
    corecore