2,739 research outputs found
Active elastohydrodynamics of vesicles in narrow, blind constrictions
Fluid-resistance limited transport of vesicles through narrow constrictions
is a recurring theme in many biological and engineering applications. Inspired
by the motor-driven movement of soft membrane-bound vesicles into closed
neuronal dendritic spines, here we study this problem using a combination of
passive three-dimensional simulations and a simplified semi-analytical theory
for active transport of vesicles that are forced through such constrictions by
molecular motors. We show that the motion of these objects is characterized by
two dimensionless quantities related to the geometry and the strength of
forcing relative to the vesicle elasticity. We use numerical simulations to
characterize the transit time for a vesicle forced by fluid pressure through a
constriction in a channel, and find that relative to an open channel, transport
into a blind end leads to the formation of an effective lubrication layer that
strongly impedes motion. When the fluid pressure forcing is complemented by
forces due to molecular motors that are responsible for vesicle trafficking
into dendritic spines, we find that the competition between motor forcing and
fluid drag results in multistable dynamics reminiscent of the real system. Our
study highlights the role of non-local hydrodynamic effects in determining the
kinetics of vesicular transport in constricted geometries
Detection of x-rays from galaxy groups associated with the gravitationally lensed systems PG 1115+080 and B1422+231
Gravitational lenses that produce multiple images of background quasars can
be an invaluable cosmological tool. Deriving cosmological parameters, however,
requires modeling the potential of the lens itself. It has been estimated that
up to a quarter of lensing galaxies are associated with a group or cluster
which perturbs the gravitational potential. Detection of X-ray emission from
the group or cluster can be used to better model the lens. We report on the
first detection in X-rays of the group associated with the lensing system PG
1115+080 and the first X-ray image of the group associated with the system
B1422+231. We find a temperature and rest-frame luminosity of 0.8 +/- 0.1 keV
and 7 +/- 2 x 10^{42} ergs/s for PG 1115+080 and 1.0 +infty/-0.3 keV and 8 +/-
3 x 10^{42} ergs/s for B1422+231. We compare the spatial and spectral
characteristics of the X-ray emission to the properties of the group galaxies,
to lens models, and to the general properties of groups at lower redshift.Comment: Accepted for publication in ApJ. 17 pages, 5 figures. Minor changes
to tex
Effects of an experimental resource pulse on the macrofaunal assemblage inhabiting seagrass macrophytodetritus
Physical disturbances and resource pulses are major structuring drivers of terrestrial and aquatic ecosystems. The accumulations of exported dead leaves from the Neptune grass, Posidonia oceanica (L.) Delile are ephemeral and highly dynamic detrital habitats offering food sources and shelter for vagile macrofauna community. These habitats are frequently subject to wind and storms which can add “new” detrital material to previous accumulations; these can be defined as resource pulses and could potentially impact the associated macrofauna. This study assesses the impact of an experimental resource pulse on the macrofauna associated with exported P. oceanica litter accumulations. The experimental design consisted of two pulse treatments (the addition of dead leaves with and without the associated fauna), and two controls (one procedural, and one total control), where the added material was left underwater for 14 days. Invertebrates then present in the sampled detritus were all identified and counted. Our data suggest that the responses of these invertebrates to resource pulses present intermediate characteristics between aquatic and terrestrial ecosystems responses. Inputting a moderate amount of dead P. oceanica leaves into experimental mesocosms had a non-negligible impact and rapidly affected the macrofauna community. Specialist detritivores species were boosted while herbivore/detritivore species dramatically decreased. Predators also showed a modest but significant density increase, demonstrating the fast propagation of the pulse response throughout the entire community and through several trophic levels. Strict hypoxia-tolerant species were also only observed in the treated mesocosms, indicating the strong influence of resource pulses on physico-chemical conditions occurring inside litter accumulations
Status of the BMV experiment
In this contribution we present the status of the BMV experiment whose goal
is to measure the vacuum magnetic birefringence
An in vivo evaluation of Brilliant Blue G in animals and humans
Background/Aims: To evaluate the retinal toxicity of Brilliant Blue G (BBG) following intravitreal injection in rat eyes and examine the biocompatibility and the staining properties in humans.Methods: BBG was injected into the 11 rat eyes to evaluate toxic effects with balanced salt solution (BSS) serving as control. Retinal toxicity was assessed by retinal ganglion cell (RGC) counts and by light microscopy 7 days later. In addition, BBG was applied during vitrectomy for macular hole (MH) (n = 15) or epiretinal membranes (ERM) (n = 3) in a prospective, non-comparative consecutive series of patients. Before and after surgery, all patients underwent a complete clinical examination including measurement of best corrected visual acuity (VA) and intraocular pressure, perimetry, fundus photography and optical coherence tomography. Patients were seen 1 day before surgery and then in approximately four weeks intervals.Results: No significant reduction in RGC numbers and no morphological alterations were noted. A sufficient staining of the internal limiting membrane (ILM) was seen in patients with MH, while the staining pattern in ERM cases was patchy, indicating that parts of the ILM were peeled off along with the ERM in a variable extent. All MHs could be closed successfully. VA improved in 10 eyes (56%; 8/15 MH patients, 2/3 ERM patients), was unchanged in four eyes (22%; all MH patients) and was reduced in four eyes (22%; 3/15 MH, 1/3 ERM). No toxic effects attributable to the dye were noted during patient follow-up. The ultrastructure of tissue harvested during surgery was unremarkable.Conclusion: Brilliant Blue provides a sufficient and selective staining of the ILM. No retinal toxicity or adverse effects related to the dye were observed in animal and human studies. The long-term safety of this novel dye will have to be evaluated in larger patient series and a longer follow-up
- …