209 research outputs found
Level Set Approach to Reversible Epitaxial Growth
We generalize the level set approach to model epitaxial growth to include
thermal detachment of atoms from island edges. This means that islands do not
always grow and island dissociation can occur. We make no assumptions about a
critical nucleus. Excellent quantitative agreement is obtained with kinetic
Monte Carlo simulations for island densities and island size distributions in
the submonolayer regime.Comment: 7 pages, 9 figure
Epitaxial Growth Kinetics with Interacting Coherent Islands
The Stranski-Krastanov growth kinetics of undislocated (coherent)
3-dimensional islands is studied with a self-consistent mean field rate theory
that takes account of elastic interactions between the islands. The latter are
presumed to facilitate the detachment of atoms from the islands with a
consequent decrease in their average size. Semi-quantitative agreement with
experiment is found for the time evolution of the total island density and the
mean island size. When combined with scaling ideas, these results provide a
natural way to understand the often-observed initial increase and subsequent
decrease in the width of the coherent island size distribution.Comment: 4 pages, 4 figure
Influence of adatom interactions on second layer nucleation
We develop a theory for the inclusion of adatom interactions in second layer
nucleation occurring in epitaxial growth. The interactions considered are due
to ring barriers between pairs of adatoms and binding energies of unstable
clusters. The theory is based on a master equation, which describes the time
development of microscopic states that are specified by cluster configurations
on top of an island. The transition rates are derived by scaling arguments and
tested against kinetic Monte-Carlo simulations. As an application we reanalyze
experiments to determine the step edge barrier for Ag/Pt(111).Comment: 4 pages, 4 figure
mGene.web: a web service for accurate computational gene finding
We describe mGene.web, a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences. It offers pre-trained models for the recognition of gene structures including untranslated regions in an increasing number of organisms. With mGene.web, users have the additional possibility to train the system with their own data for other organisms on the push of a button, a functionality that will greatly accelerate the annotation of newly sequenced genomes. The system is built in a highly modular way, such that individual components of the framework, like the promoter prediction tool or the splice site predictor, can be used autonomously. The underlying gene finding system mGene is based on discriminative machine learning techniques and its high accuracy has been demonstrated in an international competition on nematode genomes. mGene.web is available at http://www.mgene.org/web, it is free of charge and can be used for eukaryotic genomes of small to moderate size (several hundred Mbp)
mGene.web: a web service for accurate computational gene finding
We describe mGene.web, a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences. It offers pre-trained models for the recognition of gene structures including untranslated regions in an increasing number of organisms. With mGene.web, users have the additional possibility to train the system with their own data for other organisms on the push of a button, a functionality that will greatly accelerate the annotation of newly sequenced genomes. The system is built in a highly modular way, such that individual components of the framework, like the promoter prediction tool or the splice site predictor, can be used autonomously. The underlying gene finding system mGene is based on discriminative machine learning techniques and its high accuracy has been demonstrated in an international competition on nematode genomes. mGene.web is available at http://www.mgene.org/web, it is free of charge and can be used for eukaryotic genomes of small to moderate size (several hundred Mbp)
The process of irreversible nucleation in multilayer growth. II. Exact results in one and two dimensions
We study irreversible dimer nucleation on top of terraces during epitaxial
growth in one and two dimensions, for all values of the step-edge barrier. The
problem is solved exactly by transforming it into a first passage problem for a
random walker in a higher-dimensional space. The spatial distribution of
nucleation events is shown to differ markedly from the mean-field estimate
except in the limit of very weak step-edge barriers. The nucleation rate is
computed exactly, including numerical prefactors.Comment: 22 pages, 10 figures. To appear in Phys. Rev.
A Hybrid Monte Carlo Method for Surface Growth Simulations
We introduce an algorithm for treating growth on surfaces which combines
important features of continuum methods (such as the level-set method) and
Kinetic Monte Carlo (KMC) simulations. We treat the motion of adatoms in
continuum theory, but attach them to islands one atom at a time. The technique
is borrowed from the Dielectric Breakdown Model. Our method allows us to give a
realistic account of fluctuations in island shape, which is lacking in
deterministic continuum treatments and which is an important physical effect.
Our method should be most important for problems close to equilibrium where KMC
becomes impractically slow.Comment: 4 pages, 5 figure
YASA: yet another time series segmentation algorithm for anomaly detection in big data problems
Time series patterns analysis had recently attracted the attention of the research community for real-world applications. Petroleum industry is one of the application contexts where these problems are present, for instance for anomaly detection. Offshore petroleum platforms rely on heavy turbomachines for its extraction, pumping and generation operations. Frequently, these machines are intensively monitored by hundreds of sensors each, which send measurements with a high frequency to a concentration hub. Handling these data calls for a holistic approach, as sensor data is frequently noisy, unreliable, inconsistent with a priori problem axioms, and of a massive amount. For the anomalies detection problems in turbomachinery, it is essential to segment the dataset available in order to automatically discover the operational regime of the machine in the recent past. In this paper we propose a novel time series segmentation algorithm adaptable to big data problems and that is capable of handling the high volume of data involved in problem contexts. As part of the paper we describe our proposal, analyzing its computational complexity. We also perform empirical studies comparing our algorithm with similar approaches when applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Effect of strain on surface diffusion in semiconductor heteroepitaxy
We present a first-principles analysis of the strain renormalization of the
cation diffusivity on the GaAs(001) surface. For the example of
In/GaAs(001)-c(4x4) it is shown that the binding of In is increased when the
substrate lattice is expanded. The diffusion barrier \Delta E(e) has a
non-monotonic strain dependence with a maximum at compressive strain values (e
0) studied.
We discuss the consequences of spatial variations of both the binding energy
and the diffusion barrier of an adatom caused by the strain field around a
heteroepitaxial island. For a simplified geometry, we evaluate the speed of
growth of two coherently strained islands on the GaAs(001) surface and identify
a growth regime where island sizes tend to equalize during growth due to the
strain dependence of surface diffusion.Comment: 10 pages, 8 figures, LaTeX2e, to appear in Phys. Rev. B (2001). Other
related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
- …