116 research outputs found

    Integrated mass transportation system study/definition/implementation program definition

    Get PDF
    Specific actions needed to plan and effect transportation system improvements are identified within the constraints of limited financial, energy and land use resources, and diverse community requirements. A specific program is described which would develop the necessary generalized methodology for devising improved transportation systems and evaluate them against specific criteria for intermodal and intramodal optimization. A consistent, generalized method is provided for study and evaluation of transportation system improvements

    Recent advances in carbon-carbon substrate technology at NASA. Langley Research Center

    Get PDF
    A comparison of specific strengths of candidate high-temperature materials as a function of temperature is shown. From this comparison, it is apparent why there is an interest in carbon-carbon composites for applications as a strong, light-weight thermal protection system (TPS), or as hot structure, for applications above 2500 F. The lower bound of the carbon-carbon band is representative of the tensile strength of cross-ply Advanced Carbon-Carbon (ACC). The upper bound represents capabilities of various experimental carbon-carbon composites. Thin carbon-carbon composites, such as would be used as TPS panels or hot aero-structure, are usually constructed of layups of 2-D fabrics of carbon-fiber yarns (tows). Although the in-plane strengths of these composites can be very attractive, a major problem area is low interlaminar strength. The low interlaminar strength is the result of a relatively weak carbon matrix and poor interaction between the fibers and matrix. The purpose of this paper is to discuss strategies being employed to improve the interlaminar strengths of the materials at the upper bound of the carbon-carbon band, and to present some recent encouraging results. The emphasis of these strategies is to improve interlaminar shear and tensile strengths while maintaining, or even improving, the inplane properties

    Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    Get PDF
    An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation

    Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines

    Get PDF
    An improved, lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbocharging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation

    Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    Get PDF
    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve

    Transcriptional profiling of the acute pulmonary inflammatory response induced by LPS: role of neutrophils

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer often develops in association with chronic pulmonary inflammatory diseases with an influx of neutrophils. More detailed information on inflammatory pathways and the role of neutrophils herein is a prerequisite for understanding the mechanism of inflammation associated cancer.</p> <p>Methods</p> <p>In the present study, we used microarrays in order to obtain a global view of the transcriptional responses of the lung to LPS in mice, which mimics an acute lung inflammation. To investigate the influence of neutrophils in this process, we depleted mice from circulating neutrophils by treatment with anti-PMN antibodies prior to LPS exposure.</p> <p>Results</p> <p>A total of 514 genes was greater than 1.5-fold differentially expressed in the LPS induced lung inflammation model. 394 of the 514 were up regulated genes mostly involved in cell cycle and immune/inflammation related processes, such as cytokine/chemokine activity and signalling. Down regulated genes represented nonimmune processes, such as development, metabolism and transport. Notably, the number of genes and pathways that were differentially expressed, was reduced when animals were depleted from circulating neutrophils, confirming the central role of neutrophils in the inflammatory response. Furthermore, there was a significant correlation between the differentially expressed gene list and the promutagenic DNA lesion M<sub>1</sub>dG, suggesting that it is the extent of the immune response which drives genetic instability in the inflamed lung. Several genes that were specifically regulated by the presence of activated neutrophils could be identified and these were mostly involved in interferon signalling, oxidative stress response and cell cycle progression. The latter possibly refers to a higher rate of cell turnover in the inflamed lung with neutrophils, suggesting that the neutrophil influx is associated with a higher risk for the accumulation and fixation of mutations.</p> <p>Conclusion</p> <p>Gene expression profiling identified specific genes and pathways that are related to neutrophilic inflammation and could be associated to cancer development and indicate an active role of neutrophils in mediating the LPS induced inflammatory response in the mouse lung.</p

    Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus

    Get PDF
    The goal of this study is to clarify whether the expression of metallothionein (MT) could affect the prognosis and the metastatic potential of squamous cell carcinoma (SCC) of the oesophagus. In paraffin-embedded specimens resected from 57 patients, MT mRNA and protein expressions were detected by in situ hybridization and immunohistochemistry respectively. The expression of MT was evaluated in respect of clinicopathologic variables and patients' survival. MT mRNA expression was significantly associated with the proportion of lymph node metastasis (71% in MT mRNA-positive tumours vs 42% in MT mRNA-negative tumours; P = 0.0343) and that of distant metastasis (29% in MT mRNA-positive tumours vs 5% in MT mRNA-negative tumours; P = 0.0452). In respect of MT protein expression, the frequency of distant metastasis was more common in MT-positive tumours than in MT-negative tumours (30% in MT-positive tumours vs 8% in MT-negative tumours; P = 0.0446). The survival rate of the patients with MT protein-negative tumours was significantly better than that of the patients with MT protein-positive tumours (P = 0.0340). There was a positive correlation between the expression of MT protein and that of proliferating cell nuclear antigen (P = 0.0018). Therefore, we conclude that MT expression, both at the mRNA and protein levels, may be a potential marker predicting metastatic and proliferative activities of oesophageal SCC. © 1999 Cancer Research Campaig

    Emerging roles of ATF2 and the dynamic AP1 network in cancer

    Get PDF
    Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.Fil: Lopez Bergami, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Lau, Eric . Burnham Institute for Medical Research; Estados UnidosFil: Ronai, Zeev . Burnham Institute for Medical Research; Estados Unido
    corecore