1,794 research outputs found

    An overview of the EXTraS project: Exploring the X-ray Transient and Variable Sky

    Full text link
    The EXTraS project (Exploring the X-ray Transient and variable Sky) will harvest the hitherto unexplored temporal domain information buried in the serendipitous data collected by the European Photon Imaging Camera (EPIC) instrument onboard the ESA XMM-Newton X-ray observatory since its launch. This will include a search for fast transients, as well as a search and characterization of variability (both periodic and aperiodic) in hundreds of thousands of sources spanning more than nine orders of magnitude in time scale and six orders of magnitude in flux. X-ray results will be complemented by multiwavelength characterization of new discoveries. Phenomenological classification of variable sources will also be performed. All our results will be made available to the community. A didactic program in selected High Schools in Italy, Germany and the UK will also be implemented. The EXTraS project (2014-2016), funded within the EU/FP7 framework, is carried out by a collaboration including INAF (Italy), IUSS (Italy), CNR/IMATI (Italy), University of Leicester (UK), MPE (Germany) and ECAP (Germany).Comment: 6 pages, 1 figure. Proceedings of "Swift: 10 years of Discovery", to appear in Po

    On the determination of the spin of the black hole in Cyg X-1 from X-ray reflection spectra

    Get PDF
    The spin of Cygnus X-1 is measured by fitting reflection models to Suzaku data covering the energy band 0.9-400 keV. The inner radius of the accretion disc is found to lie within 2 gravitational radii (r_g=GM/c^2) and a value for the dimensionless black hole spin is obtained of 0.97^{+0.014}_{-0.02}. This agrees with recent measurements using the continuum fitting method by Gou et al. and of the broad iron line by Duro et al. The disc inclination is measured at 23.7^{+6.7}_{-5.4} deg, which is consistent with the recent optical measurement of the binary system inclination by Orosz et al of 27+/-0.8 deg. We pay special attention to the emissivity profile caused by irradiation of the inner disc by the hard power-law source. The X-ray observations and simulations show that the index q of that profile deviates from the commonly used, Newtonian, value of 3 within 3r_g, steepening considerably within 2r_g, as expected in the strong gravity regime.Comment: 7 pages, 10 figures, MNRAS in pres

    Discovery of a Third Harmonic Cyclotron Resonance Scattering Feature in the X-ray Spectrum of 4U 0115+63

    Get PDF
    We have discovered a third harmonic cyclotron resonance scattering feature (CRSF) in observations of the recent outburst of 4U 0115+63 with the Rossi X-ray Timing Explorer (RXTE). The spectrum in a narrow pulse phase range shows CRSFs at 12.40+0.65/-0.35, 21.45+0.25/-0.38, and 33.56+0.70/-0.90 keV. With centroid energy ratios to the fundamental of 1.73+/-0.08 and 2.71+/-0.13, the CRSFs are not harmonically spaced. Strong variability of the continuum and CRSFs with pulse phase indicate a complex emission geometry near the neutron star polar cap. In addition, one RXTE observation, which spanned periastron passage, revealed a strong 2 mHz quasi-periodic oscillation (QPO). This is slower by two orders of magnitude than the beat-frequency QPO expected in this system and slower by a factor of more than 5 compared with other QPOs seen in accreting X-ray pulsars.Comment: To appear in The Astrophysical Journal Letters. 4 pages, 5 figures. Uses "emulateapj.sty". Revised version includes new figures and additions to the analysi

    The broad iron Kalpha line of Cygnus X-1 as seen by XMM-Newton in the EPIC-pn modified timing mode

    Full text link
    We present the analysis of the broadened, flourescent iron Kalpha line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-1. The XMM-Newton data were taken in a modified version of the timing mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal-to-noise ratio in the Fe Kalpha band. We find that the best-fit spectrum consists of the sum of an exponentially cut off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe Kalpha feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to rotating maximally.Comment: Astron. Astrophys., in pres

    The XMM-Newton view of the Crab

    Get PDF
    Aims. We discuss the current X-ray view of the Crab Nebula and Pulsar, summarising our analysis of observations of the source with the EPIC-pn camera on board the XMM-Newton observatory. Different modes of EPIC-pn were combined in order to yield a complete scenario of the spectral properties of the Crab resolved in space and time (pulse phase). In addition we give a description of the special EPIC-pn Burst mode and guidance for data reduction in that mode. Methods. We analysed spectra for the nebula and pulsar separately in the 0.6−12.0 keV energy band. All data were processed with the SAS 6.0.0 XMM-Newton Scientific Analysis System package; models were fitted to the data with XSPEC 11. The high time resolution of EPIC-pn in its Burst mode (7 ÎŒs) was used for a phase resolved analysis of the pulsar spectrum, after determination of the period with epoch folding techniques. Data from the SmallWindow mode were processed and corrected for pile-up allowing for spectroscopy simultaneously resolved in space and time. Results. The spatial variation of the spectrum over the entire region of the Crab shows a gradual spectral softening from the inner pulsar region to the outer nebula region with a variation in photon index, Γ, from 2.0 to 2.4. Pulse phase resolved spectroscopy of the Crab Pulsar reveals a phase dependent modulation of the photon index in form of a significant hardening of the spectrum in the inter-peak phase from Γ = 1.7 during the pulse peak to Γ = 1.5

    INTEGRAL-RXTE observations of Cygnus X-1

    Get PDF
    We present first results from contemporaneous observations of Cygnus X-1 with INTEGRAL and RXTE, made during INTEGRAL's performance verification phase in 2002 November and December. Consistent with earlier results, the 3-250 keV data are well described by Comptonization spectra from a Compton corona with a temperature of kT~50-90 keV and an optical depth of tau~1.0-1.3 plus reflection from a cold or mildly ionized slab with a covering factor of Omega/2pi~0.2-0.3. A soft excess below 10 keV, interpreted as emission from the accretion disk, is seen to decrease during the 1.5 months spanned by our observations. Our results indicate a remarkable consistency among the independently calibrated detectors, with the remaining issues being mainly related to the flux calibration of INTEGRAL.Comment: 6 pages, 3 figures. Figs. 2 and 3 are best viewed in color. Accepted for publication in the INTEGRAL special edition of A&A

    Entanglement measures and the quantum to classical mapping

    Full text link
    A quantum model can be mapped to a classical model in one higher dimension. Here we introduce a finite-temperature correlation measure based on a reduced density matrix rho_A obtained by cutting the classical system along the imaginary time (inverse temperature) axis. We show that the von-Neumann entropy S_ent of rho_A shares many properties with the mutual information, yet is based on a simpler geometry and is thus easier to calculate. For one-dimensional quantum systems in the thermodynamic limit we proof that S_ent is non-extensive for all temperatures T. For the integrable transverse Ising and XXZ models we demonstrate that the entanglement spectra of rho_A in the limit T-> 0 are described by free-fermion Hamiltonians and reduce to those of the regular reduced density matrix---obtained by a spatial instead of an imaginary-time cut---up to degeneracies.Comment: 5 page
    • 

    corecore