378 research outputs found

    Elastic Pion Scattering on the Deuteron in a Multiple Scattering Model

    Get PDF
    Pion elastic scattering on deuterium is studied in the KMT multiple scattering approach developed in momentum space. Using a Paris wave function and the same methods and approximations as commonly used in pion scattering on heavier nuclei excellent agreement with differential cross section data is obtained for a wide range of pion energies. Only for Tπ>250T_{\pi}>250 MeV and very backward angles, discrepancies appear that are reminiscent of disagreements in pion scattering on 3^3He, 3^3H, and 4^4He. At low energies the second order corrections have been included. Polarization observables are studied in detail. While tensor analyzing powers are well reproduced, vector analyzing powers exhibit dramatic discrepancies.Comment: 25 pages LATEX and 9 postscript figures in a self-extracting uufile archiv

    Plasma Magnetohydrodynamics and Energy Conversion

    Get PDF
    Contains reports on seven research projects.U. S. Air Force (Aeronautical Systems Division) under Contract AF33 (615)-1083 with the Air Force Aero Propulsion Laboratory, Wright-Patterson Air Force Base, OhioNational Science Foundation (Grant GK-57

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    Bullying behaviors and victimization experiences among adolescent students: the role of resilience

    Get PDF
    The role of resilience in the relationship between bullying behaviours, victimisation experiences, and self-efficacy was examined. Three hundred and 93 (191 male, 202 female) adolescents (mean age = 15.88, SD = .64) from schools in Coimbatore, India completed scales to assess bullying behaviours and victimisation experiences, resilience, and self-efficacy. Multigroup SEM, with separate groups created according to participant sex, revealed that resilience mediated the relationship between bullying behaviours and self-efficacy in males. Males engaged in bullying behaviours and experienced victimisation more frequently than females. The findings of the study have implication for designing intervention programs to enhance resilience among adolescents and young adults to enable them to manage bullying behaviours

    External validations of cardiovascular clinical prediction models: a large-scale review of the literature

    Get PDF
    Background: There are many clinical prediction models (CPMs) available to inform treatment decisions for patients with cardiovascular disease. However, the extent to which they have been externally tested, and how well they generally perform has not been broadly evaluated. Methods: A SCOPUS citation search was run on March 22, 2017 to identify external validations of cardiovascular CPMs in the Tufts Predictive Analytics and Comparative Effectiveness CPM Registry. We assessed the extent of external validation, performance heterogeneity across databases, and explored factors associated with model performance, including a global assessment of the clinical relatedness between the derivation and validation data. Results: We identified 2030 external validations of 1382 CPMs. Eight hundred seven (58%) of the CPMs in the Registry have never been externally validated. On average, there were 1.5 validations per CPM (range, 0-94). The median external validation area under the receiver operating characteristic curve was 0.73 (25th-75th percentile [interquartile range (IQR)], 0.66-0.79), representing a median percent decrease in discrimination of -11.1% (IQR, -32.4% to +2.7%) compared with performance on derivation data. 81% (n=1333) of validations reporting area under the receiver operating characteristic curve showed discrimination below that reported in the derivation dataset. 53% (n=983) of the validations report some measure of CPM calibration. For CPMs evaluated more than once, there was typically a large range of performance. Of 1702 validations classified by relatedness, the percent change in discrimination was -3.7% (IQR, -13.2 to 3.1) for closely related validations (n=123), -9.0 (IQR, -27.6 to 3.9) for related validations (n=862), and -17.2% (IQR, -42.3 to 0) for distantly related validations (n=717; P<0.001). Conclusions: Many published cardiovascular CPMs have never been externally validated, and for those that have, apparent performance during development is often overly optimistic. A single external validation appears insufficient to broadly understand the performance heterogeneity across different settings.Analysis and support of clinical decision makingDevelopment and application of statistical models for medical scientific researc

    The epithelial cholinergic system of the airways

    Get PDF
    Acetylcholine (ACh), a classical transmitter of parasympathetic nerve fibres in the airways, is also synthesized by a large number of non-neuronal cells, including airway surface epithelial cells. Strongest expression of cholinergic traits is observed in neuroendocrine and brush cells but other epithelial cell types—ciliated, basal and secretory—are cholinergic as well. There is cell type-specific expression of the molecular pathways of ACh release, including both the vesicular storage and exocytotic release known from neurons, and transmembrane release from the cytosol via organic cation transporters. The subcellular distribution of the ACh release machineries suggests luminal release from ciliated and secretory cells, and basolateral release from neuroendocrine cells. The scenario as known so far strongly suggests a local auto-/paracrine role of epithelial ACh in regulating various aspects on the innate mucosal defence mechanisms, including mucociliary clearance, regulation of macrophage function and modulation of sensory nerve fibre activity. The proliferative effects of ACh gain importance in recently identified ACh receptor disorders conferring susceptibility to lung cancer. The cell type-specific molecular diversity of the epithelial ACh synthesis and release machinery implies that it is differently regulated than neuronal ACh release and can be specifically targeted by appropriate drugs
    corecore