14,928 research outputs found
New Insights on Interstellar Gas-Phase Iron
In this paper, we report on the gas-phase abundance of singly-ionized iron
(Fe II) for 51 lines of sight, using data from the Far Ultraviolet
Spectroscopic Explorer (FUSE). Fe II column densities are derived by measuring
the equivalent widths of several ultraviolet absorption lines and subsequently
fitting those to a curve of growth. Our derivation of Fe II column densities
and abundances creates the largest sample of iron abundances in moderately- to
highly-reddened lines of sight explored with FUSE, lines of sight that are on
average more reddened than lines of sight in previous Copernicus studies. We
present three major results. First, we observe the well-established correlation
between iron depletion and and also find trends between iron depletion
and other line of sight parameters (e.g. f(H_2), E_(B-V), and A_V), and examine
the significance of these trends. Of note, a few of our lines of sight probe
larger densities than previously explored and we do not see significantly
enhanced depletion effects. Second, we present two detections of an extremely
weak Fe II line at 1901.773 A in the archival STIS spectra of two lines of
sight (HD 24534 and HD 93222). We compare these detections to the column
densities derived through FUSE spectra and comment on the line's f-value and
utility for future studies of Fe II. Lastly, we present strong anecdotal
evidence that the Fe II f-values derived empirically through FUSE data are more
accurate than previous values that have been theoretically calculated, with the
probable exception of f_1112.Comment: Accepted for publication in ApJ, 669, 378; see ApJ version for small
updates. 53 total pages (preprint format), 7 tables, 11 figure
Large-scale Cosmic-Ray Anisotropies above 4 EeV Measured by the Pierre Auger Observatory
We present a detailed study of the large-scale anisotropies of cosmic rays with energies above 4 EeV measured using the Pierre Auger Observatory. For the energy bins [4, 8] EeV and E ≥ 8 EeV, the most significant signal is a dipolar modulation in R.A. at energies above 8 EeV, as previously reported. In this paper we further scrutinize the highest-energy bin by splitting it into three energy ranges. We find that the amplitude of the dipole increases with energy above 4 EeV. The growth can be fitted with a power law with index β = 0.79 ± 0.19. The directions of the dipoles are consistent with an extragalactic origin of these anisotropies at all the energies considered. Additionally, we have estimated the quadrupolar components of the anisotropy: they are not statistically significant. We discuss the results in the context of the predictions from different models for the distribution of ultrahigh-energy sources and cosmic magnetic fields
Is There Enhanced Depletion of Gas-Phase Nitrogen in Moderately Reddened Lines of Sight?
We report on the abundance of interstellar neutral nitrogen (NI) for 30
sightlines, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE)
and the Hubble Space Telescope (HST). NI column densities are derived by
measuring the equivalent widths of several ultraviolet absorption lines and
subsequently fitting those to a curve of growth. We find a mean interstellar
N/H of 51+/-4 ppm. This is below the mean found by Meyer et al. of 62(+4,-3)
ppm (adjusted for a difference in f-values). Our mean N/H is similar, however,
to the (f-value adjusted) mean of 51+/-3 ppm found by Knauth et al. for a
larger sample of sightlines with larger hydrogen column densities comparable to
those in this study. We discuss the question of whether or not nitrogen shows
increased gas-phase depletion in lines of sight with column densities
log(H_tot) >~ 21, as claimed by Knauth et al. The nitrogen abundance in the
line of sight toward HD 152236 is particularly interesting. We derive very
small N/H and N/O ratios for this line of sight that may support a previous
suggestion that members of the Sco OB1 association formed from an N-deficient
region.Comment: Accepted in The Astrophysical Journal, 9/2006 (expected pub. date:
1/2007) 38 pages, 5 figures (4 color
Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30–80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy—corrected for geometrical effects—is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal
Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30–80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy—corrected for geometrical effects—is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal
Unusually Weak Diffuse Interstellar Bands toward HD 62542
As part of an extensive survey of diffuse interstellar bands (DIBs), we have
obtained optical spectra of the moderately reddened B5V star HD 62542, which is
known to have an unusual UV extinction curve of the type usually identified
with dark clouds. The typically strongest of the commonly catalogued DIBs
covered by the spectra -- those at 5780, 5797, 6270, 6284, and 6614 A -- are
essentially absent in this line of sight, in marked contrast with other lines
of sight of similar reddening. We compare the HD 62542 line of sight with
others exhibiting a range of extinction properties and molecular abundances and
interpret the weakness of the DIBs as an extreme case of deficient DIB
formation in a dense cloud whose more diffuse outer layers have been stripped
away. We comment on the challenges these observations pose for identifying the
carriers of the diffuse bands.Comment: 20 pages, 4 figures; aastex; accepted by Ap
Search for antiproton decay at the Fermilab Antiproton Accumulator
A search for antiproton decay has been made at the Fermilab Antiproton
Accumulator. Limits are placed on thirteen antiproton decay modes. The results
include the first explicit experimental limits on the muonic decay modes of the
antiproton, and the first limits on the decay modes e- gamma gamma, and e-
omega. The most stringent limit is for the decay mode pbar-> e- gamma. At 90%
C.L. we find that tau/B(pbar-> e- gamma) > 7 x 10^5 yr. The most stringent
limit for decay modes with a muon in the final state is for the decay pbar->
mu- gamma. At 90% C.L. we find that tau/B(pbar-> mu- gamma) > 5 x 10^4 yr.Comment: 20 pages, 8 figures. Submitted to Phys. Rev. D. Final results on 13
channels (was 15) are presente
- …