297 research outputs found

    The UA9 experimental layout

    Full text link
    The UA9 experimental equipment was installed in the CERN-SPS in March '09 with the aim of investigating crystal assisted collimation in coasting mode. Its basic layout comprises silicon bent crystals acting as primary collimators mounted inside two vacuum vessels. A movable 60 cm long block of tungsten located downstream at about 90 degrees phase advance intercepts the deflected beam. Scintillators, Gas Electron Multiplier chambers and other beam loss monitors measure nuclear loss rates induced by the interaction of the beam halo in the crystal. Roman pots are installed in the path of the deflected particles and are equipped with a Medipix detector to reconstruct the transverse distribution of the impinging beam. Finally UA9 takes advantage of an LHC-collimator prototype installed close to the Roman pot to help in setting the beam conditions and to analyze the efficiency to deflect the beam. This paper describes in details the hardware installed to study the crystal collimation during 2010.Comment: 15pages, 11 figure, submitted to JINS

    New Capabilities of the FLUKA Multi-Purpose Code

    Get PDF
    FLUKA is a general purpose Monte Carlo code able to describe the transport and interaction of any particle and nucleus type in complex geometries over an energy range extending from thermal neutrons to ultrarelativistic hadron collisions. It has many different applications in accelerator design, detector studies, dosimetry, radiation protection, medical physics, and space research. In 2019, CERN and INFN, as FLUKA copyright holders, together decided to end their formal collaboration framework, allowing them henceforth to pursue different pathways aimed at meeting the evolving requirements of the FLUKA user community, and at ensuring the long term sustainability of the code. To this end, CERN set up the FLUKA.CERN Collaboration1. This paper illustrates the physics processes that have been newly released or are currently implemented in the code distributed by the FLUKA.CERN Collaboration2 under new licensing conditions that are meant to further facilitate access to the code, as well as intercomparisons. The description of coherent effects experienced by high energy hadron beams in crystal devices, relevant to promising beam manipulation techniques, and the charged particle tracking in vacuum regions subject to an electric field, overcoming a former lack, have already been made available to the users. Other features, namely the different kinds of low energy deuteron interactions as well as the synchrotron radiation emission in the course of charged particle transport in vacuum regions subject to magnetic fields, are currently undergoing systematic testing and benchmarking prior to release. FLUKA is widely used to evaluate radiobiological effects, with the powerful support of the Flair graphical interface, whose new generation (Available at http://flair.cern) offers now additional capabilities, e.g., advanced 3D visualization with photorealistic rendering and support for industry-standard volume visualization of medical phantoms. FLUKA has also been playing an extensive role in the characterization of radiation environments in which electronics operate. In parallel, it has been used to evaluate the response of electronics to a variety of conditions not included in radiation testing guidelines and standards for space and accelerators, and not accessible through conventional ground level testing. Instructive results have been obtained from Single Event Effects (SEE) simulations and benchmarks, when possible, for various radiation types and energies. The code has reached a high level of maturity, from which the FLUKA.CERN Collaboration is planning a substantial evolution of its present architecture. Moving towards a modern programming language allows to overcome fundamental constraints that limited development options. Our long term goal, in addition to improving and extending its physics performances with even more rigorous scientific oversight, is to modernize its structure to integrate independent contributions more easily and to formalize quality assurance through state-of-the-art software deployment techniques. This includes a continuous integration pipeline to automatically validate the codebase as well as automatic processing and analysis of a tailored physics-case test suite. With regard to the aforementioned objectives, several paths are currently envisaged, like finding synergies with Geant4, both at the core structure and interface level, this way offering the user the possibility to run with the same input different Monte Carlo codes and crosscheck the results

    New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle

    Get PDF
    Three neuropeptides Zopat-MS-2 (pEDVDHVFLRFa), Zopat-SK-1 (pETSDDYGHLRFa) and Zopat-NVPL-4trunc. (GRWGGFA), recently isolated from the neuroendocrine system of the Zophobas atratus beetle, were tested for their myotropic and hyperglycaemic activities in this species. These peptides exerted differentiated dose-dependent and tissue specific physiological effects. Zopat-MS-2 inhibited contractions of the isolated heart, ejaculatory duct, oviduct and hindgut of adult beetles and induced bimodal effects in the heart contractile activity of pupae in vivo. It also increased the haemolymph free sugar level in larvae of this species, apart from myotropic activity. Zopat-SK-1 showed myostimulatory action on the isolated hindgut of the adult beetles, but it decreased contractions of the heart, ejaculatory duct and oviduct. Injections of this peptide at a dose of 2Β ΞΌg also caused delayed cardioinhibitory effects on the heartbeat of the pupae. Together with the ability to increase free sugar level in the haemolymph of larvae these were new physiological activities of sulfakinins in insects. Zopat-NVPL-4trunc. inhibited the muscle contractions of the two organs: hindgut and ejaculatory duct but it was inactive on the oviduct and the heart of the adult beetles. This peptide also increased free sugar level concentration in the haemolymph of Z. atratus larvae. These physiological actions are the first biological activities discovered for this group of the insect peptides. The present work showed pleiotropic activity of three neuropeptides and indicates that the visceral muscle contractions and the haemolymph sugar homeostasis in Z. atratus are regulated by complex mechanisms

    Management and Tillage Infl uence Barley Forage Productivity and Water Use in Dryland Cropping Systems

    Get PDF
    Annual cereal forages are resilient in water use (WU), water use efficiency (WUE), and weed control compared with grain crops in dryland systems. The combined influence of tillage and management systems on annual cereal forage productivity and WU is not well documented. We conducted a field study for the effects of tillage (no-till and tilled) and management (ecological and conventional) systems on WU and performance of forage barley (Hordeum vulgare L.) and weed biomass in two crop rotations (wheat [Triticum aestivum L.]–forage barley–pea [Pisum sativum L.] and wheat–forage barley–corn [Zea mays L.] –pea) from 2004 to 2010 in eastern Montana. Conventional management included recommended seeding rates, broadcast N fertilization, and short stubble height of wheat. Ecological management included 33% greater seeding rates, banded N fertilization at planting, and taller wheat stubble. Forage barley in ecological management had 28 more plants m–2, 2 cm greater height, 65 more tillers m–2, 606 kg ha–1 greater crop biomass, 3.5 kg ha–1 mm–1greater WUE, and 47% reduction in weed biomass at harvest than in conventional management. Pre-plant and post-harvest soil water contents were similar among tillage and management systems, but barley WU was 13 mm greater in 4-yr than 3-yr rotation. Tillage had little effect on barley performance and WU. Dryland forage barley with higher seeding rate and banded N fertilization in more diversified rotation produced more yield and used water more efficiently than that with conventional seeding rate, broadcast N fertilization, and less diversified rotation in the semiarid northern Great Plains

    Novel highly potent CD4bs bNAb with restricted pathway to HIV-1 escape

    Get PDF
    Purpose: Broadly HIV-1 neutralizing antibodies (bNAbs) can suppress viremia in humans and represent a novel approach for effective immunotherapy. However, bNAb monotherapy selects for antibody-resistant viral variants. Thus, we focused on the identification of new antibody combinations and/or novel bNAbs that restrict pathways of HIV-1 escape. Methods: We screened HIV-1 positive patients for their neutralizing capacities. Following, we performed single cell sorting and PCR of HIV-1 Env-reactive mature B cells of identified elite neutralizers. Found antibodies were tested for neutralization and binding capacities in vitro. Further, their antiviral activity was tested in an HIV-1 infected humanized mouse model. Results: Here we report the isolation of antibody 1–18, a VH1–46-encoded CD4 binding site (CD4bs) bNAb identified in an individual ranking among the top 1% neutralizers of 2,274 HIV-1-infected subjects. Tested on a 119-virus panel, 1–18 showed to be exceptionally broad and potent with a coverage of 97% and a mean IC50 of 0.048 lg/mL, exceeding the activity of most potent CD4bs bNAbs described to-date. A 2.4 Γ… cryo-EM structure of 1–18 bound to a native-like Env trimer revealed that it interacts with HIV-1 env similar to other CD4bs bNAbs, but includes additional contacts to the V3 loop of the adjacent protomer. Notably, in vitro, 1–18 maintained activity against viruses carrying mutations associated with escape from VRC01-class bNAbs. Further, its HIV-1 env wide escape profile differed critically from other CD4bs bNAbs. In humanized mice, monotherapy with 1–18 was sufficient to prevent the development of viral escape variants that rapidly emerged during treatment with other CD4bs bNAbs. Finally, 1–18 overcame classical HIV-1 mutations that are driven by VRC01-like bNAbs in vivo. Conclusion: 1–18 is a highly potent and broad bNAb that restricts escape and overcomes frequent CD4bs escape pathways, providing new options for bNAb combinations to prevent and treat HIV-1 infection

    Genome-Wide Analyses Reveal a Role for Peptide Hormones in Planarian Germline Development

    Get PDF
    Genomic/peptidomic analyses of the planarian Schmidtea mediterranea identifies >200 neuropeptides and uncovers a conserved neuropeptide required for proper maturation and maintenance of the reproductive system

    Transcriptome Analysis of the Desert Locust Central Nervous System: Production and Annotation of a Schistocerca gregaria EST Database

    Get PDF
    ) displays a fascinating type of phenotypic plasticity, designated as β€˜phase polyphenism’. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology

    Nanopillar spin filter tunnel junctions with manganite barriers.

    Get PDF
    The potential of a manganite ferromagnetic insulator in the field of spin-filtering has been demonstrated. For this, an ultrathin film of Sm0.75Sr0.25MnO3 is integrated as a barrier in an epitaxial oxide nanopillar tunnel junction and a high spin polarization of up to 75% at 5 K has been achieved. A large zero-bias anomaly observed in the dynamic conductance at low temperatures is explained in terms of the Kondo scattering model. In addition, a decrease in spin polarization at low bias and hysteretic magneto-resistance at low temperatures are reported. The results open up new possibilities for spin-electronics and suggest exploration of other manganites-based materials for the room temperature spin-filter applications.This work was partially supported by the ERC Advanced Integrators Grant β€œSUPERSPIN”. B.P. was funded by the Nehru Trust for Cambridge University and St John’s College. The TEM work at Texas A&M was supported by the U.S. National Science Foundation (NSF-DMR 0846504). The authors wish to thank Prof. J. Kumar (IIT Kanpur, India) for help in improving the manuscript.This document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright Β© American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nl500798
    • …
    corecore