387 research outputs found

    Multi-Wavelength Monitoring of the Changing-Look AGN NGC 2617 during State Changes

    Get PDF
    Optical and near-infrared photometry, optical spectroscopy, and soft X-ray and UV monitoring of the changing-look active galactic nucleus NGC 2617 show that it continues to have the appearance of a type-1 Seyfert galaxy. An optical light curve for 2010-2017 indicates that the change of type probably occurred between 2010 October and 2012 February and was not related to the brightening in 2013. In 2016 and 2017 NGC 2617 brightened again to a level of activity close to that in 2013 April. However, in 2017 from the end of the March to end of July 2017 it was in very low level and starting to change back to a Seyfert 1.8. We find variations in all passbands and in both the intensities and profiles of the broad Balmer lines. A new displaced emission peak has appeared in Hβ. X-ray variations are well correlated with UV-optical variability and possibly lead by ̃2-3 d. The K band lags the J band by about 21.5 ± 2.5 d and lags the combined B + J bands by ̃25 d. J lags B by about 3 d. This could be because J-band variability arises predominantly from the outer part of the accretion disc, while K-band variability is dominated by thermal re-emission by dust. We propose that spectral-type changes are a result of increasing central luminosity causing sublimation of the innermost dust in the hollow bi-conical outflow. We briefly discuss various other possible reasons that might explain the dramatic changes in NGC 2617.Fil: Oknyansky, V. L.. Sternberg Astronomical Institute; RusiaFil: Gaskell, C. M.. Department of Astronomy and Astrophysics. University of California. Santa Cruz; Estados UnidosFil: Mikailov, K. M.. Shamakhy Astrophysical Observatory, National Academy of Sciences. Pirkuli; AzerbaiyánFil: Lipunov, V. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University ; RusiaFil: Shatsky, N. I.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tsygankov, S. S.. Tuorla Observatory, Department of Physics and Astronomy. University of Turku.; FinlandiaFil: Gorbovskoy, E. S.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Tatarnikov, A. M.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Metlov, V. G.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Malanchev, K. L.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Brotherton, M.B.. University of Wyoming; Estados UnidosFil: Kasper, D.. University of Wyoming; Estados UnidosFil: Du, P.. Institute of High Energy Physics. Chinese Academy of Sciences; ChinaFil: Chen, X.. School of Space Science and Physics. Shandong University; ChinaFil: Burlak, M. A.. Sternberg Astronomical Institute. M.V.Lomonosov Moscow State University; RusiaFil: Buckley, D. A. H.. The South African Astronomical Observatory; SudáfricaFil: Rebolo, R.. Instituto de Astrofisica de Canarias; EspañaFil: Serra-Ricart, M.. Instituto de Astrofisica de Canarias; EspañaFil: Podestá, R.. Universidad Nacional de San Juan; ArgentinaFil: Levato, O. H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentin

    MASTER Optical Polarization Variability Detection in the Microquasar V404 Cyg/GS 2023+33

    Get PDF
    On 2015 June 15, the Swift space observatory discovered that the Galactic black hole candidate V404 Cyg was undergoing another active X-ray phase, after 25 years of inactivity. The 12 telescopes of the MASTER Global Robotic Net located at six sites across four continents were the first ground-based observatories to start optical monitoring of the microquasar after its gamma-ray wake up at 18h 34m 09s U.T. on 2015 June 15. In this paper, we report, for the first time, the discovery of variable optical linear polarization, changing by 4%-6% over a timescale of ∼1 hr, on two different epochs. We can conclude that the additional variable polarization arises from the relativistic jet generated by the black hole in V404 Cyg. The polarization variability correlates with optical brightness changes, increasing when the flux decreases.Fil: Lipunov, V.. M.V.Lomonosov Moscow State University. Physics Department; RusiaFil: Gorbovskoy, E.. M.V.Lomonosov Moscow State University, Sternberg Astronomical Institute; RusiaFil: Krushinskiy, V.. Kourovka Astronomical Observatory, Ural Federal University; RusiaFil: Vlasenko, D.. M.V.Lomonosov Moscow State University, Sternberg Astronomical Institute; RusiaFil: Tiurina, N.. M.V.Lomonosov Moscow State University, Sternberg Astronomical Institute; RusiaFil: Balanutsa, P.. M.V.Lomonosov Moscow State University, Sternberg Astronomical Institute; RusiaFil: Kuznetsov, A.. M.V.Lomonosov Moscow State University, Sternberg Astronomical Institute; RusiaFil: Budnev, N.. Applied Physics Institute. Irkutsk State University; RusiaFil: Gress, O.. Applied Physics Institute, Irkutsk State University; RusiaFil: Tlatov, A.. Kislovodsk Solar Station of the Main (Pulkovo) Observatory RAS; RusiaFil: Rebolo Lopez, L.. Instituto de Astrofsica de Canarias; EspañaFil: Serra-Ricart, M.. Instituto de Astrofsica de Canarias; EspañaFil: Buckley, D. A. H.. South African Astronomical Observatory; SudáfricaFil: Israelyan, G.. Instituto de Astrofsica de Canarias; EspañaFil: Lodieu, N.. Instituto de Astrofisica de Canarias; EspañaFil: Ivanov, K.. Applied Physics Institute. Irkutsk State University; RusiaFil: Yazev, S.. Applied Physics Institute, Irkutsk State University; RusiaFil: Sergienko, Y.. Blagoveschensk State Pedagogical University; RusiaFil: Gabovich, A.. Blagoveschensk State Pedagogical University; RusiaFil: Yurkov, V.. Blagoveschensk State Pedagogical University; RusiaFil: Levato, Orlando Hugo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Saffe, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Podesta, R.. Observatorio "Felix Aguiklar". Universidad Nacional de San Juan; ArgentinaFil: Lopez, C.. Observatorio "Felix Aguilar". Universidad nacional de San juan; Argentin

    The impact of chronic stress on the rat brain lipidome

    Get PDF
    Chronic stress is a major risk factor for several human disorders that affect modern societies. The brain is a key target of chronic stress. In fact, there is growing evidence indicating that exposure to stress affects learning and memory, decision making and emotional responses, and may even predispose for pathological processes, such as Alzheimer's disease and depression. Lipids are a major constituent of the brain and specifically signaling lipids have been shown to regulate brain function. Here, we used a mass spectrometry-based lipidomic approach to evaluate the impact of a chronic unpredictable stress (CUS) paradigm on the rat brain in a region-specific manner. We found that the prefrontal cortex (PFC) was the area with the highest degree of changes induced by chronic stress. Although the hippocampus presented relevant lipidomic changes, the amygdala and, to a greater extent, the cerebellum presented few lipid changes upon chronic stress exposure. The sphingolipid and phospholipid metabolism were profoundly affected, showing an increase in ceramide (Cer) and a decrease in sphingomyelin (SM) and dihydrosphingomyelin (dhSM) levels, and a decrease in phosphatidylethanolamine (PE) and ether phosphatidylcholine (PCe) and increase in lysophosphatidylethanolamine (LPE) levels, respectively. Furthermore, the fatty-acyl profile of phospholipids and diacylglycerol revealed that chronic stressed rats had higher 38 carbon(38C)-lipid levels in the hippocampus and reduced 36C-lipid levels in the PFC. Finally, lysophosphatidylcholine (LPC) levels in the PFC were found to be correlated with blood corticosterone (CORT) levels. In summary, lipidomic profiling of the effect of chronic stress allowed the identification of dysregulated lipid pathways, revealing putative targets for pharmacological intervention that may potentially be used to modulate stress-induced deficits.Funding by Fundação para a Ciência e Tecnologia (PTDC/SAU-NMC/118971/2010) and by the North Region Operational Program (ON.2-O Novo Norte), under Quadro de Referência Estratégico Nacional (QREN) and through Fundo Europeu de Desenvolvimento Regional (FEDER). GDP is funded by NIH grants R01 NS056049 and P50 AG008702 (to Scott Small)

    Complement Factor H Is Expressed in Adipose Tissue in Association With Insulin Resistance

    Get PDF
    10 páginas, 5 figuras, 5 tablas -- PAGS nros. 200-209OBJECTIVE Activation of the alternative pathway of the complement system, in which factor H (fH; complement fH [CFH]) is a key regulatory component, has been suggested as a link between obesity and metabolic disorders. Our objective was to study the associations between circulating and adipose tissue gene expressions of CFH and complement factor B (fB; CFB) with obesity and insulin resistance. RESEARCH DESIGN AND METHODS Circulating fH and fB were determined by enzyme-linked immunosorbent assay in 398 subjects. CFH and CFB gene expressions were evaluated in 76 adipose tissue samples, in isolated adipocytes, and in stromovascular cells (SVC) (n = 13). The effects of weight loss and rosiglitazone were investigated in independent cohorts. RESULTS Both circulating fH and fB were associated positively with BMI, waist circumference, triglycerides, and inflammatory parameters and negatively with insulin sensitivity and HDL cholesterol. For the first time, CFH gene expression was detected in human adipose tissue (significantly increased in subcutaneous compared with omental fat). CFH gene expression in omental fat was significantly associated with insulin resistance. In contrast, CFB gene expression was significantly increased in omental fat but also in association with fasting glucose and triglycerides. The SVC fraction was responsible for these differences, although isolated adipocytes also expressed fB and fH at low levels. Both weight loss and rosiglitazone led to significantly decreased circulating fB and fH levels. CONCLUSIONS Increased circulating fH and fB concentrations in subjects with altered glucose tolerance could reflect increased SVC-induced activation of the alternative pathway of complement in omental adipose tissue linked to insulin resistance and metabolic disturbances.Obesity is closely associated with a cluster of metabolic diseases, such as dyslipidemia, hypertension, insulin resistance, type 2 diabetes, and atherosclerosis (1). Adipose tissue is well known for its essential role as an energy storage depot and for secreting adipokines that influence sites as diverse as brain, liver, muscle, β-cells, gonads, lymphoid organs, and systemic vasculature (2,3). Expression analysis of macrophage and nonmacrophage cell populations isolated from adipose tissue demonstrates that adipose tissue macrophages are responsible for most of the proinflammatory cytokines (4). In recent years, it has become evident that alterations in the function of the innate immune system are intrinsically linked to metabolic pathways in humans (5–8). The complement system is a major component of the innate immune system, defending the host against pathogens, coordinating various events during inflammation, and bridging innate and adaptive immune responses. Complement deficiency and abnormalities in the regulation of the complement system lead to increased susceptibility to infection and chronic inflammatory diseases (9,10,11). Factor H (fH) is a relatively abundant plasma glycoprotein that is essential to maintain complement homeostasis and to restrict the action of complement to activating surfaces. fH acts as a cofactor for factor I–mediated cleavage of C3b (the active fragment of the third component of complement C3), accelerates the dissociation of the alternative pathway C3 convertases (a bimolecular enzymatic complex formed by active fragments of C3 and factor B [fB]), and competes with fB for binding to C3b. fH regulates complement both in fluid phase and on cellular surfaces (12–16). It has been suggested that activation of the alternative pathway of the complement system could be a link between obesity and metabolic disorders (17–21). Moreover, fB and factor D (fD, adipsin) are produced by adipose tissue where they likely influence formation of the alternative pathway component C3 convertase and the production of the anaphylatoxin C3a and its carboxypeptidase B-anaphylatoxic–inactivated derivative C3adesArg (acylation-stimulating protein [ASP]). Both ASP/C3adesArg and C3a interact with the receptor C5L2 to effectively stimulate triglyceride synthesis in cultured adipocytes (22). C3 knockout (C3KO) mice are obligatorily ASP deficient and present lipid abnormalities (23). In humans, ASP levels are increased in obesity, type 2 diabetes, and in individuals at risk of arterial disease, including those with hypertension, type 2 diabetes, dyslipidemia, and coronary artery disease, whereas exercise or weight loss decreases ASP levels (24,25). These data suggest a relationship between these conditions and activation of the alternative pathway of complement. There is also a correlation between increased C3 concentration and decreased insulin action (26,27). Levels of C3 and fB were higher in subjects with insulin resistance and other features of the metabolic syndrome (28,29).Given these interactions among activation of the alternative pathway of complement, metabolic disturbances, and a chronic low-level inflammatory state, we designed experiments to study the associations among circulating fH, fB, insulin resistance, lipid parameters, and inflammatory markers. We found that circulating fH and fB are strongly associated with obesity. For that reason, we also studied whether adipose tissue could constitute a source of circulating fH and fBThis work was partially supported by research grants from the Ministerio de Educación y Ciencia (SAF2008-02073). CIBEROBN Fisiopatología de la Obesidad y Nutrición is an initiative from the Instituto de Salud Carlos III from SpainPeer reviewe
    corecore