10,356 research outputs found

    Liquid metal magnetohydrodynamics (LMMHD) technology transfer feasibility study. Volume 1: Summary

    Get PDF
    The potential application of liquid metal magnetohydrodynamics (LMMHD) to central station utility power generation through the period to 1990 is examined. Included are: (1) a description of LMMHD and a review of its development status, (2) LMMHD preliminary design for application to central station utility power generation, (3) evaluation of LMMHD in comparison with conventional and other advanced power generation systems and (4) a technology development plan. One of the major conclusions found is that the most economic and technically feasible application of LMMHD is a topping cycle to a steam plant, taking advantage of high temperatures available but not usable by the steam cycle

    Study of the technique of stellar occultation

    Get PDF
    The results are reported of a study of the stellar occultation technique for measuring the composition of the atmosphere. The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km deep for molecular oxygen and 30 km deep for ozone. Intensity profiles obtained during various occultations were analyzed by first determining the tangential columm density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study

    The solid state photomultiplier: Status of photon counting beyond the near-infrared

    Get PDF
    Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed

    Program on Earth Observation Data Management Systems (EODMS)

    Get PDF
    An assessment was made of the needs of a group of potential users of satellite remotely sensed data (state, regional, and local agencies) involved in natural resources management in five states, and alternative data management systems to satisfy these needs are outlined. Tasks described include: (1) a comprehensive data needs analysis of state and local users; (2) the design of remote sensing-derivable information products that serve priority state and local data needs; (3) a cost and performance analysis of alternative processing centers for producing these products; (4) an assessment of the impacts of policy, regulation and government structure on implementing large-scale use of remote sensing technology in this community of users; and (5) the elaboration of alternative institutional arrangements for operational Earth Observation Data Management Systems (EODMS). It is concluded that an operational EODMS will be of most use to state, regional, and local agencies if it provides a full range of information services -- from raw data acquisition to interpretation and dissemination of final information products

    Purification and characterization of a novel human 15 kd cholesterol crystallization inhibitor protein in bile

    Get PDF
    Crystallization-inhibiting proteins can explain longer nucleation times associated with bile from gallstone-free subjects as compared with bile from patients with cholesterol gallstones. We partially characterized and examined the crystallization inhibitory potency of a newly purified 15 kd human biliary protein. Gallbladder bile was passed through an anti-apolipoprotein A-I (apo A-I) immunoaffinity column to extract lipid-associaied proteins. The bound fraction was separated by 30 kd ultrafiltration. Sodium dodecyl sulfate-polyacrylamide gel electrophesis (SDS-PAGE) was performed under nonreducing and reducing conditions. Cholesterol crystallization activity was tested in a photometric cholesterol crystal growth assay. Isoelectric focusing was performed by using a standard gel, The purified 15 kd protein was subjected to N-terminal amino acid sequencing, Although the whole apo A-I-bound fraction contained a variety of proteins and lipids, its 30 kd filtrate yielded a nearly pure 15 kd protein with only minor contamination from apo A-I. Amino acid sequencing showed that the protein was unique. Enzymatic deglycosylation revealed no evidence for glycosylation. At a protein concentration of 10 mu g/ml, crystallization time was delayed as compared with control and apo A-I, and final crystal mass was reduced to 75% of control, Its isoelectric point was 6.1 without isoforms, Under nonreducing conditions, the protein formed a 30 kd dimer and a 60 kd tetramer. We conclude that this protein is a novel potent biliary crystallization inhibitor protein
    corecore