24,348 research outputs found

    Magnetic properties of the double perovskites LaPbMSbO6 (M = Mn, Co and Ni)

    Full text link
    New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 oC. All samples are monoclinic, space group P21/n, as obtained from Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2+ through super-superexchange paths M2+ - O2- - Sb5+ - O2- - M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2+ respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+ - O2- - Mn2+.Comment: 4 pages, 4 figures included. Manuscript submitted to IEEE Transactions on Magnetics, proceedings of the LAW3M 2013 conferenc

    Optomechanical-like coupling between superconducting resonators

    Get PDF
    We propose and analyze a circuit that implements a nonlinear coupling between two superconducting microwave resonators. The resonators are coupled through a superconducting quantum interference device (SQUID) that terminates one of the resonators. This produces a nonlinear interaction on the standard optomechanical form, where the quadrature of one resonator couples to the photon number of the other resonator. The circuit therefore allows for all-electrical realizations of analogs to optomechanical systems, with coupling that can be both strong and tunable. We estimate the coupling strengths that should be attainable with the proposed device, and we find that the device is a promising candidate for realizing the single-photon strong-coupling regime. As a potential application, we discuss implementations of networks of nonlinearly-coupled microwave resonators, which could be used in microwave-photon based quantum simulation.Comment: 10 pages, 7 figure

    Heavy-heavy form factors and generalized factorization

    Get PDF
    We reanalyze B -> D pi and B -> K J/psi data to extract a set of parameters which give the relevant hadronic matrix elements in terms of factorized amplitudes. Various sources of theoretical uncertainties are studied, in particular those depending on the model adopted for the form factors. We find that the fit to the B -> D pi branching ratios substantially depends on the model describing the Isgur-Wise function and on the value of its slope. This dependence can be reduced by substituting the BR(B -> D pi) with suitable ratios of non-leptonic to differential semileptonic BRs. In this way, we obtain a model-independent determination of these parameters. Using these results, the B -> D form factors at q^2=M_pi^2 can be extracted from a fit of the BR(B -> D pi). The comparison between the form factors obtained in this way and the corresponding measurements in semileptonic decays can be used as a test of (generalized) factorization free from the uncertainties due to heavy-heavy form factor modeling. Finally, we present predictions for yet-unmeasured D pi and D K branching ratios and extract f_{D_s} and f_{D_s^*} from B -> DD_s decays. We find f_{D_s} = 270 +- 45 MeV and f_{D_s^*}=260 +- 40 MeV, in good agreement with recent measurements and lattice calculations.Comment: 20 pages, 16 ps/eps files, uses epsfig.sty; exp. numbers update

    Tailoring the ground state of the ferrimagnet La2Ni(Ni1/3Sb2/3)O6

    Get PDF
    We report on the magnetic and structural properties of La2Ni(Ni1/3Sb2/3)O6 in polycrystal, single crystal and thin film samples. We found that this material is a ferrimagnet (Tc ~ 100 K) which possesses a very distinctive and uncommon feature in its virgin curve of the hysteresis loops. We observe that bellow 20 K it lies outside the hysteresis cycle, and this feature was found to be an indication of a microscopically irreversible process possibly involving the interplay of competing antiferromagnetic interactions that hinder the initial movement of domain walls. This initial magnetic state is overcome by applying a temperature dependent characteristic field. Above this field, an isothermal magnetic demagnetization of the samples yield a ground state different from the initial thermally demagnetized one.Comment: 21 pages, 8 figures, submitted to JMM

    Hidden entanglement in the presence of random telegraph dephasing noise

    Full text link
    Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.Comment: 8 pages, 1 figure, submitted to Physica Scripta on September 17th 201

    Hidden entanglement, system-environment information flow and non-Markovianity

    Full text link
    It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.Comment: 9 pages, 2 figures; proceedings of the conference IQIS 2013, September 24-26 2013, Como, Ital

    The dynamical Casimir effect in superconducting microwave circuits

    Get PDF
    We theoretically investigate the dynamical Casimir effect in electrical circuits based on superconducting microfabricated waveguides with tunable boundary conditions. We propose to implement a rapid modulation of the boundary conditions by tuning the applied magnetic flux through superconducting quantum interference devices (SQUIDs) that are embedded in the waveguide circuits. We consider two circuits: (i) An open waveguide circuit that corresponds to a single mirror in free space, and (ii) a resonator coupled to a microfabricated waveguide, which corresponds to a single-sided cavity in free space. We analyze the properties of the dynamical Casimir effect in these two setups by calculating the generated photon-flux density, output-field correlation functions, and the quadrature squeezing spectra. We show that these properties of the output field exhibit signatures unique to the radiation due to the dynamical Casimir effect, and could therefore be used for distinguishing the dynamical Casimir effect from other types of radiation in these circuits. We also discuss the similarities and differences between the dynamical Casimir effect, in the resonator setup, and downconversion of pump photons in parametric oscillators.Comment: 18 pages, 14 figure

    Factorization, charming penguins, and all that

    Get PDF
    We discuss few selected topics related to the calculation of hadronic amplitudes relevant for two-body non-leptonic B decays.Comment: LaTeX, 9 pages, 1 eps figure included, uses psfig.sty. Talk given by M.C. at Beauty '97, UCLA, USA, October 13-17, 199
    • …
    corecore