33,705 research outputs found

    Stabilising entanglement by quantum jump-based feedback

    Full text link
    We show that direct feedback based on quantum jump detection can be used to generate entangled steady states. We present a strategy that is insensitive to detection inefficiencies and robust against errors in the control Hamiltonian. This feedback procedure is also shown to overcome spontaneous emission effects by stabilising states with high degree of entanglement.Comment: 5 pages, 4 figure

    Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback

    Get PDF
    A "no-knowledge" measurement of an open quantum system yields no information about any system observable; it only returns noise input from the environment. Surprisingly, performing such a no-knowledge measurement can be advantageous. We prove that a system undergoing no-knowledge monitoring has reversible noise, which can be cancelled by directly feeding back the measurement signal. We show how no-knowledge feedback control can be used to cancel decoherence in an arbitrary quantum system coupled to a Markovian reservoir that is being monitored. Since no-knowledge feedback does not depend on the system state or Hamiltonian, such decoherence cancellation is guaranteed to be general, robust and can operate in conjunction with any other quantum control protocol. As an application, we show that no-knowledge feedback could be used to improve the performance of dissipative quantum computers subjected to local loss.Comment: 6 pages + 2 pages supplemental material, 3 figure

    Morphology of low-redshift compact galaxy clusters I. Shapes and radial profiles

    Get PDF
    The morphology of clusters of galaxies may be described with a set of parameters which contain information about the formation and evolutionary history of these systems. In this paper we present a preliminary study of the morphological parameters of a sample of 28 compact Abell clusters extracted from DPOSS data. The morphology of galaxy clusters is parameterized by their apparent ellipticity, position angle of the major axis, centre coordinates, core radius and beta-model power law index. Our procedure provides estimates of these parameters by simultaneously fitting them all, overcoming some of the difficulties induced by sparse data and low number statistics typical of this kind of analysis. The cluster parameters were fitted in a 3 x 3 h^-2 sqMpc region, measuring the background in a 2 <R< 2.5 h^-1Mpc annulus. We also explore the correlations between shape and profile parameters and other cluster properties. One third of this compact cluster sample has core radii smaller than 50 h^-1 kpc, i.e. near the limit that our data allow us to resolve, possibly consistent with cusped models. The remaining clusters span a broad range of core radii up to 750 h^-1 kpc. More than 80 per cent of this sample has ellipticity higher than 0.2. The alignment between the cluster and the major axis of the dominant galaxy is confirmed, while no correlation is observed with other bright cluster members. No significant correlation is found between cluster richness and ellipticity. Instead, cluster richness is found to correlate, albeit with large scatter, with the cluster core radius.[abridged]Comment: 23 pages, 17 figures, accepted for publication in MNRAS. Full paper including full resolution figures 2 and 9 at http://www.eso.org/~vstrazzu/P/ME1030fv.pd
    corecore