316 research outputs found
The Quantum Mechanics of Hyperion
This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76,
186 (1998)] that the chaotic tumbling of the satellite Hyperion would become
non-classical within 20 years, but for the effects of environmental
decoherence. The dynamics of quantum and classical probability distributions
are compared for a satellite rotating perpendicular to its orbital plane,
driven by the gravitational gradient. The model is studied with and without
environmental decoherence. Without decoherence, the maximum quantum-classical
(QC) differences in its average angular momentum scale as hbar^{2/3} for
chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC
differences for a macroscopic object like Hyperion. The quantum probability
distributions do not approach their classical limit smoothly, having an
extremely fine oscillatory structure superimposed on the smooth classical
background. For a macroscopic object, this oscillatory structure is too fine to
be resolved by any realistic measurement. Either a small amount of smoothing
(due to the finite resolution of the apparatus) or a very small amount of
environmental decoherence is sufficient ensure the classical limit. Under
decoherence, the QC differences in the probability distributions scale as
(hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that
decoherence is not essential to explain the classical behavior of macroscopic
bodies.Comment: 17 pages, 24 figure
On induced CPT-odd Chern-Simons terms in 3+1 effective action
This paper was originally designated as Comment to the paper by R. Jackiw and
V. Alan Kostelecky (hep-ph/9901358). We provide an example of the fermionic
system, the superfluid 3He-A, in which the CPT-odd Chern-Simons terms in the
effective action are unambiguously induced by chiral fermions. In this system
the Lorentz and gauge invariances both are violated at high energy, but the
behavior of the system beyond the cut-off is known. This allows us to construct
the CPT-odd action, which combines the conventional 3+1 Chern-Simons term and
the mixed axial-gravitational Chern-Simons term discussed in hep-ph/9905460.
The influence of Chern-Simons term on the dynamics of the effective gauge field
has been experimentally observed in rotating 3He-A.Comment: RevTex, 3 pages, no figures, extended version of Comment to the paper
by R. Jackiw and V. Alan Kostelecky (hep-ph/9901358), to appear in JETP Let
Contributions to the Power Spectrum of Cosmic Microwave Background from Fluctuations Caused by Clusters of Galaxies
We estimate the contributions to the cosmic microwave background radiation
(CMBR) power spectrum from the static and kinematic Sunyaev-Zel'dovich (SZ)
effects, and from the moving cluster of galaxies (MCG) effect. We conclude, in
agreement with other studies, that at sufficiently small scales secondary
fluctuations caused by clusters provide important contributions to the CMBR. At
, these secondary fluctuations become important relative to
lensed primordial fluctuations. Gravitational lensing at small angular scales
has been proposed as a way to break the ``geometric degeneracy'' in determining
fundamental cosmological parameters. We show that this method requires the
separation of the static SZ effect, but the kinematic SZ effect and the MCG
effect are less important. The power spectrum of secondary fluctuations caused
by clusters of galaxies, if separated from the spectrum of lensed primordial
fluctuations, might provide an independent constraint on several important
cosmological parameters.Comment: LateX, 41 pages and 10 figures. Accepted for publication in the
Astrophysical Journa
Target mass number dependence of subthreshold antiproton production in proton-, deuteron- and alpha-particle-induced reactions
Data from KEK on subthreshold \bar{\mrm{p}} as well as on and
\mrm{K}^\pm production in proton-, deuteron- and -induced reactions
at energies between 2.0 and 12.0 A GeV for C, Cu and Pb targets are described
within a unified approach. We use a model which considers a nuclear reaction as
an incoherent sum over collisions of varying numbers of projectile and target
nucleons. It samples complete events and thus allows for the simultaneous
consideration of all final particles including the decay products of the
nuclear residues. The enormous enhancement of the \bar{\mrm{p}} cross
section, as well as the moderate increase of meson production in deuteron and
induced compared to proton-induced reactions, is well reproduced for
all target nuclei. In our approach, the observed enhancement near the
production threshold is mainly due to the contributions from the interactions
of few-nucleon clusters by simultaneously considering fragmentation processes
of the nuclear residues. The ability of the model to reproduce the target mass
dependence may be considered as a further proof of the validity of the cluster
concept.Comment: 9 pages, 4 figure
The Abnormally Weighting Energy Hypothesis: the Missing Link between Dark Matter and Dark Energy
We generalize tensor-scalar theories of gravitation by the introduction of an
abnormally weighting type of energy. This theory of tensor-scalar anomalous
gravity is based on a relaxation of the weak equivalence principle that is now
restricted to ordinary visible matter only. As a consequence, the convergence
mechanism toward general relativity is modified and produces naturally cosmic
acceleration as an inescapable gravitational feedback induced by the
mass-variation of some invisible sector. The cosmological implications of this
new theoretical framework are studied. From the Hubble diagram cosmological
test \textit{alone}, this theory provides an estimation of the amount of
baryons and dark matter in the Universe that is consistent with the independent
cosmological tests of Cosmic Microwave Background (CMB) and Big Bang
Nucleosynthesis (BBN). Cosmic coincidence is naturally achieved from a equally
natural assumption on the amplitude of the scalar coupling strength. Finally,
from the adequacy to supernovae data, we derive a new intriguing relation
between the space-time dependences of the gravitational coupling and the dark
matter mass, providing an example of crucial constraint on microphysics from
cosmology. This glimpses at an enticing new symmetry between the visible and
invisible sectors, namely that the scalar charges of visible and invisible
matter are exactly opposite.Comment: 24 pages, 6 figures, new version with extended discussions and added
references. Accepted for publication in JCAP (sept. 2008
Modelling Clock Synchronization in the Chess gMAC WSN Protocol
We present a detailled timed automata model of the clock synchronization
algorithm that is currently being used in a wireless sensor network (WSN) that
has been developed by the Dutch company Chess. Using the Uppaal model checker,
we establish that in certain cases a static, fully synchronized network may
eventually become unsynchronized if the current algorithm is used, even in a
setting with infinitesimal clock drifts
Coupled Maps on Trees
We study coupled maps on a Cayley tree, with local (nearest-neighbor)
interactions, and with a variety of boundary conditions. The homogeneous state
(where every lattice site has the same value) and the node-synchronized state
(where sites of a given generation have the same value) are both shown to occur
for particular values of the parameters and coupling constants. We study the
stability of these states and their domains of attraction. As the number of
sites that become synchronized is much higher compared to that on a regular
lattice, control is easier to effect. A general procedure is given to deduce
the eigenvalue spectrum for these states. Perturbations of the synchronized
state lead to different spatio-temporal structures. We find that a mean-field
like treatment is valid on this (effectively infinite dimensional) lattice.Comment: latex file (25 pages), 4 figures included. To be published in Phys.
Rev.
Color Transparency Effects in Electron Deuteron Interactions at Intermediate Q^2
High momentum transfer electrodisintegration of polarized and unpolarized
deuterium targets, is studied. We show that the importance of final
state interactions-FSI, occuring when a knocked out nucleon interacts with the
other nucleon, depends strongly on the momentum of the spectator nucleon. In
particular, these FSI occur when the essential contributions to the scattering
amplitude arise from internucleon distances . But the absorption
of the high momentum may produce a point like configuration, which
evolves with time. In this case, the final state interactions probe the point
like configuration at the early stage of its evolution. The result is that
significant color transparency effects, which can either enhance or suppress
computed cross sections, are predicted to occur for .Comment: 37 pages LaTex, 12 uuencoded PostScript Figures as separate file, to
be published in Z.Phys.
Inflationary attractor in Gauss-Bonnet brane cosmology
The inflationary attractor properties of the canonical scalar field and
Born-Infeld field are investigated in the Randall-Sundrum II scenario with a
Gauss-Bonnet term in the bulk action. We find that the inflationary attractor
property will always hold for both the canonical and Born-Infeld fields for any
allowed non-negative Gauss-Bonnet coupling. We also briefly discuss the
possibility of explaining the suppressed lower multiples and running scalar
spectral index simultaneously in the scenario of Gauss-Bonnet brane inflation.Comment: 7 pages, no figures. An error in the discussion of BI field
corrected, conclusion correcte
Overestimating Outcome Rates: Statistical Estimation When Reliability Is Suboptimal
To demonstrate how failure to account for measurement error in an outcome (dependent) variable can lead to significant estimation errors and to illustrate ways to recognize and avoid these errors. Data Sources . Medical literature and simulation models. Study Design/Data Collection . Systematic review of the published and unpublished epidemiological literature on the rate of preventable hospital deaths and statistical simulation of potential estimation errors based on data from these studies. Principal Findings . Most estimates of the rate of preventable deaths in U.S. hospitals rely upon classifying cases using one to three physician reviewers (implicit review). Because this method has low to moderate reliability, estimates based on statistical methods that do not account for error in the measurement of a “preventable death” can result in significant overestimation. For example, relying on a majority rule rating with three reviewers per case (reliability ∼0.45 for the average of three reviewers) can result in a 50–100 percent overestimation compared with an estimate based upon a reliably measured outcome (e.g., by using 50 reviewers per case). However, there are statistical methods that account for measurement error that can produce much more accurate estimates of outcome rates without requiring a large number of measurements per case. Conclusion . The statistical principles discussed in this case study are critically important whenever one seeks to estimate the proportion of cases belonging to specific categories (such as estimating how many patients have inadequate blood pressure control or identifying high-cost or low-quality physicians). When the true outcome rate is low (<20 percent), using an outcome measure that has low-to-moderate reliability will generally result in substantially overestimating the proportion of the population having the outcome unless statistical methods that adjust for measurement error are used.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74896/1/j.1475-6773.2006.00661.x.pd
- …