6,032 research outputs found

    Theoretical Interpretation of the Measurements of the Secondary Eclipses of TrES-1 and HD209458b

    Full text link
    We calculate the planet-star flux-density ratios as a function of wavelength from 0.5 microns to 25 microns for the transiting extrasolar giant planets TrES-1 and HD209458b and compare them with the recent Spitzer/IRAC-MIPS secondary eclipse data in the 4.5, 8.0, and 24 micron bands. With only three data points and generic calibration issues, detailed conclusions are difficult, but inferences regarding atmospheric composition, temperature, and global circulation can be made. Our models reproduce the observations reasonably well, but not perfectly, and we speculate on the theoretical consequences of variations around our baseline models. One preliminary conclusion is that we may be seeing in the data indications that the day side of a close-in extrasolar giant planet is brighter in the mid-infrared than its night side, unlike Jupiter and Saturn. This correspondence will be further tested when the data anticipated in other Spitzer bands are acquired, and we make predictions for what those data may show.Comment: 15 pages, including 3 color figures, submitted to the Astrophysical Journa

    Numerical Toy-Model Calculation of the Nucleon Spin Autocorrelation Function in a Supernova Core

    Full text link
    We develop a simple model for the evolution of a nucleon spin in a hot and dense nuclear medium. A given nucleon is limited to one-dimensional motion in a distribution of external, spin-dependent scattering potentials. We calculate the nucleon spin autocorrelation function numerically for a variety of potential densities and distributions which are meant to bracket realistic conditions in a supernova core. For all plausible configurations the width of the spin-density structure function is found to be less than the temperature. This is in contrast with a naive perturbative calculation based on the one-pion exchange potential which overestimates the width and thus suggests a large suppression of the neutrino opacities by nucleon spin fluctuations. Our results suggest that it may be justified to neglect the collisional broadening of the spin-density structure function for the purpose of estimating the neutrino opacities in the deep inner core of a supernova. On the other hand, we find no indication that processes such as axion or neutrino pair emission, which depend on nucleon spin fluctuations, are substantially suppressed beyond the multiple-scattering effect already discussed in the literature. Aside from these practical conclusions, our model reveals a number of interesting and unexpected insights. For example, the spin-relaxation rate saturates with increasing potential strength only if bound states are not allowed to form by including a repulsive core. There is no saturation with increasing density of scattering potentials until localized eigenstates of energy begin to form.Comment: 14 latex pages in two-column format, 15 postscript figures included, uses revtex.sty and epsf.sty. Submitted to Physical Review

    Many-Body Corrections to Charged-Current Neutrino Absorption Rates in Nuclear Matter

    Get PDF
    Including nucleon--nucleon correlations due to both Fermi statistics and nuclear forces, we have developed a general formalism for calculating the charged--current neutrino--nucleon absorption rates in nuclear matter. We find that at one half nuclear density many--body effects alone suppress the rates by a factor of two and that the suppression factors increase to \sim5 at 4×10144\times10^{14} g cm3^{-3}. The associated increase in the neutrino--matter mean--free--paths parallels that found for neutral--current interactions and opens up interesting possibilities in the context of the delayed supernova mechanism and protoneutron star cooling.Comment: 11 pages, APS REVTeX format, 1 PostScript figure, uuencoded compressed, and tarred, submitted to Physical Review Letter

    Spacelab energetic ion mass spectrometer

    Get PDF
    Basic design criteria are given for an ion mass spectrometer for use in studying magnetospheric ion populations. The proposed instrument is composed of an electrostatic analyzer followed by a magnetic spectrometer and simultaneously measures the energy per unit and mass per unit charge of the ion species. An electromagnet is used for momentum analysis to extend the operational energy range over a much wider domain than is possible with the permanent magnets used in previous flights. The energetic ion source regions, ion energization mechanisms, field line tracing, coordinated investigations, and orbit considerations are discussed and operations of the momentum analyzer and of the electrostatic energy analyzer are examined

    Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales

    Full text link
    We investigate the rates of production and thermalization of νμ\nu_\mu and ντ\nu_\tau neutrinos at temperatures and densities relevant to core-collapse supernovae and protoneutron stars. Included are contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering. For the scattering processes, in order to incorporate the full scattering kinematics at arbitrary degeneracy, the structure function formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric matter. We find that electron scattering dominates nucleon scattering as a thermalization process at low neutrino energies (ϵν10\epsilon_\nu\lesssim 10 MeV), but that nucleon scattering is always faster than or comparable to electron scattering above ϵν10\epsilon_\nu\simeq10 MeV. In addition, for ρ1013\rho\gtrsim 10^{13} g cm3^{-3}, T14T\lesssim14 MeV, and neutrino energies 60\lesssim60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron annihilation as a production mechanism for νμ\nu_\mu and ντ\nu_\tau neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to pub/thompso

    On some singularities of the correlation functions that determine neutrino opacities

    Get PDF
    Certain perturbation graphs in the calculation of the effects of the medium on neutrino scattering in supernova matter have a nonintegrable singularity in a physical region. A number of papers have addressed the apparent pathology through an ansatz that invokes higher order (rescattering) effects. Taking the Gamow-Teller terms as an example, we display an expression for the spin-spin correlation function that determines the cross-sections. It is clear from the form that there are no pathologies in the order by order perturbation expansion. Explicit formulae are given for a simple case, leading to an answer that is very different from one given by other authors.Comment: 8 page

    Nucleon Spin Fluctuations and the Supernova Emission of Neutrinos and Axions

    Full text link
    In the hot and dense medium of a supernova (SN) core, the nucleon spins fluctuate so fast that the axial-vector neutrino opacity and the axion emissivity are expected to be significantly modified. Axions with m_a\alt10^{-2}\,{\rm eV} are not excluded by SN~1987A. A substantial transfer of energy in neutrino-nucleon (νN\nu N) collisions is enabled which may alter the spectra of SN neutrinos relative to calculations where energy-conserving νN\nu N collisions had been assumed near the neutrinosphere.Comment: 8 pages. REVTeX. 2 postscript figures, can be included with epsf. Small modifications of the text, a new "Note Added", and three new references. To be published in Phys. Rev. Let

    Testing the standard fireball model of GRBs using late X-ray afterglows measured by Swift

    Get PDF
    We show that all X-ray decay curves of GRBs measured by Swift can be fitted using one or two components both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power law decay. The 1st component contains the prompt gamma-ray emission and the initial X-ray decay. The 2nd component appears later, has a much longer duration and is present for ~80% of GRBs. It most likely arises from the external shock which eventually develops into the X-ray afterglow. In the remaining ~20% of GRBs the initial X-ray decay of the 1st component fades more slowly than the 2nd and dominates at late times to form an afterglow but it is not clear what the origin of this emission is. The temporal decay parameters and gamma/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible "jet breaks". For ~50% of GRBs the observed afterglow is in accord with the model but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks but there are many examples where such breaks are predicted but are absent. The time, T_a, at which the exponential phase of the 2nd component changes to a final powerlaw decay afterglow is correlated with the peak of the gamma-ray spectrum, E_peak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts.Comment: submitted to Ap
    corecore