609 research outputs found

    A scalable cellular implementation of parallel genetic programming

    Full text link

    NGF-response of EGF-dependent progenitor cells obtained from human sympathetic ganglia

    Get PDF
    SIGNALLING molecules are thought to play a significant role in determining the fate of neural crest progenitor cells. The human sympathetic chain was identified at 6.5, 7.5, 8.2, 10.2 and 11.4 postconception (PC) weeks demonstrating low affinity nerve growth factor (NGF) receptors, and was processed for tissue culture. In the presence of epidermal growth factor (EGF), floating spheres of proliferating progenitor cells were developed in vitro. In the absence of EGF progenitor cells differentiated into tyrosine hydroxylase (TH)-immunoreactive neuronal and TH-negative flat cells. NGF treatment significantly increased neurite outgrowth and survival of TH-immunoreactive cells. The multipotent cells we isolated differ from previously reported sympathoadrenal progenitors in that they give rise to TH immunoreactive neurones precociously sensitive to NGF

    An enormous Italian pedigree of Marfan syndrome with a novel mutation in the FBN1 gene

    Get PDF
    We characterize a large Italian family presenting with Marfan syndrome (MFS), where the same :c.6872-1G > T splice site mutation in the FBN1 gene was detected in 37 affected individuals with different pathological phenotypes. Further studies on such a large pedigree could identify other genetic factors that influence MFS manifestation

    Rapid detection of copy number variations and point mutations in BRCA1/2 genes using a single workflow by ion semiconductor sequencing pipeline

    Get PDF
    Molecular analysis of BRCA1 (MIM# 604370) and BRCA2 (MIM #600185) genes is essential for familial breast and ovarian cancer prevention and treatment. An efficient, rapid, cost-effective accurate strategy for the detection of pathogenic variants is crucial. Mutations detection of BRCA1/2 genes includes screening for single nucleotide variants (SNVs), small insertions or deletions (indels), and Copy Number Variations (CNVs). Sanger sequencing is unable to identify CNVs and therefore Multiplex Ligation Probe amplification (MLPA) or Multiplex Amplicon Quantification (MAQ) is used to complete the BRCA1/2 genes analysis. The rapid evolution of Next Generation Sequencing (NGS) technologies allows the search for point mutations and CNVs with a single platform and workflow. In this study we test the possibilities of NGS technology to simultaneously detect point mutations and CNVs in BRCA1/2 genes, using the OncomineTM BRCA Research Assay on Personal Genome Machine (PGM) Platform with Ion Reporter Software for sequencing data analysis (Thermo Fisher Scientific). Comparison between the NGS-CNVs, MLPA and MAQ results shows how the NGS approach is the most complete and fast method for the simultaneous detection of all BRCA mutations, avoiding the usual time consuming multistep approach in the routine diagnostic testing of hereditary breast and ovarian cancers

    CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles

    Get PDF
    We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at z=0.44z=0.44 to estimate the value of the ratio η=Ψ/Φ\eta=\Psi/\Phi between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric.[...] Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only Φ\Phi), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum Φ+Ψ\Phi+\Psi). We thus express η\eta as a function of the mass profiles and perform our analysis over the radial range 0.5Mpcrr200=1.96Mpc0.5\,Mpc\le r\le r_{200}=1.96\,Mpc. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain \eta(r_{200})=1.01\,_{-0.28}^{+0.31} at the 68\% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied f(R)f(R) modified gravity model, the constraint on η\eta translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the f(R)f(R) interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.Comment: 18 pages, 3 figures, submitted to JCA

    A new predictive technology for perinatal stem cell isolation suited for cell therapy approaches

    Get PDF
    The use of stem cells for regenerative applications and immunomodulatory effect is in-creasing. Amniotic epithelial cells (AECs) possess embryonic‐like proliferation ability and multipo-tent differentiation potential. Despite the simple isolation procedure, inter‐individual variability and different isolation steps can cause differences in isolation yield and cell proliferation ability, compromising reproducibility observations among centers and further applications. We investi-gated the use of a new technology as a diagnostic tool for quality control on stem cell isolation. The instrument label‐free separates cells based on their physical characteristics and, thanks to a micro-camera, generates a live fractogram, the fingerprint of the sample. Eight amniotic membranes were processed by trypsin enzymatic treatment and immediately analysed. Two types of profile were generated: a monomodal and a bimodal curve. The first one represented the unsuccessful isolation with all recovered cell not attaching to the plate; while for the second type, the isolation process was successful, but we discovered that only cells in the second peak were alive and resulted adherent. We optimized a Quality Control (QC) method to define the success of AEC isolation using the frac-togram generated. This predictive outcome is an interesting tool for laboratories and cell banks that isolate and cryopreserve fetal annex stem cells for research and future clinical applications

    Financial Analysis of Dalbavancin for Acute Bacterial Skin and Skin Structure Infections for Self-Pay Patients

    Get PDF
    © 2020, The Author(s). Introduction: Acute bacterial skin and skin structure infections (ABSSSI) are an increasing cause of admission in the self-pay population. We previously reported that patients with ABSSSI discharged to receive dalbavancin showed a decreased length of stay (LOS) and total direct costs without increasing 30-day readmission rate. For patients who are financially eligible, a dalbavancin vial replacement program can offset costs. The objective of this study was to determine cost differences in treating ABSSSI in self-pay inpatients discharged to receive dalbavancin compared to standard of care (SOC). Methods: This retrospective cohort within a community health system compared self-pay adult inpatients with ABSSSI from February 3, 2016 to August 5, 2019 discharged to receive dalbavancin at an outpatient infusion center with SOC intravenous antibiotics. Patients were included with cellulitis, abscess, or postoperative wound infections diagnoses on the basis of International Classification of Disease, Tenth Revision (ICD-10) codes. Excluded populations were patients without dalbavancin vial replacement performed, pregnant, infections caused exclusively by gram-negative bacteria or fungi, or ICD-10 codes not consistent with ABSSSI. The primary outcome was direct cost of hospital stay. Secondary outcomes included length of stay (LOS), 30-day readmission rates, adverse events (AE), and indirect hospital costs. On the basis of previous studies, a one-sided Student’s t test was performed on financial data. Results: Twelve dalbavancin and 263 SOC patients met inclusion criteria. Direct cost (2758vs2758 vs 4010, p = 0.105) and indirect hospital cost (2913vs2913 vs 3646 , p = 0.162) per patient were less in the dalbavancin group. There was no significant difference between median LOS (4 vs 4, p = 0.888), AE (0% vs 14.8%), and 30-day readmission rates for dalbavancin vs SOC group (8.3% vs 7.2%, p = 0.604). Conclusion: Self-pay patients with ABSSSI discharged to receive dalbavancin with vial replacement resulted in decreased direct and indirect costs per patient with similar 30-day readmission rates, AE, and LOS. More studies targeted toward this population are warranted to determine ultimate benefit

    Non-invasive diagnostic imaging of colorectal liver metastases

    Get PDF
    Colorectal cancer is one of the few malignant tumors in which synchronous or metachronous liver metastases [colorectal liver metastases (CRLMs)] may be treated with surgery. It has been demonstrated that resection of CRLMs improves the long-term prognosis. On the other hand, patients with un-resectable CRLMs may benefit from chemotherapy alone or in addition to liver- directed therapies. The choice of the most appropriate therapeutic management of CRLMs depends mostly on the diagnostic imaging. Nowadays, multiple non-invasive imaging modalities are available and those have a pivotal role in the workup of patients with CRLMs. Although extensive research has been performed with regards to the diagnostic performance of ultrasonography, computed tomography, positron emission tomography and magnetic resonance for the detection of CRLMs, the optimal imaging strategies for staging and follow up are still to be established. This largely due to the progressive technological and pharmacological advances which are constantly improving the accuracy of each imaging modality. This review describes the non-invasive imaging approaches of CRLMs reporting the technical features, the clinical indications, the advantages and the potential limitations of each modality, as well as including some information on the development of new imaging modalities, the role of new contrast media and the feasibility of using parametric image analysis as diagnostic marker of presence of CRLMs

    Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton's Jelly Mesenchymal Stem Cells

    Get PDF
    Among perinatal stem cells of the umbilical cord, human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1-3 mu M) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers

    Cytochalasin B Influences Cytoskeletal Organization and Osteogenic Potential of Human Wharton’s Jelly Mesenchymal Stem Cells

    Get PDF
    Among perinatal stem cells of the umbilical cord, human Wharton’s jelly mesenchymal stem cells (hWJ-MSCs) are of great interest for cell-based therapy approaches in regenerative medicine, showing some advantages over other MSCs. In fact, hWJ-MSCs, placed between embryonic and adult MSCs, are not tumorigenic and are harvested with few ethical concerns. Furthermore, these cells can be easily cultured in vitro, maintaining both stem properties and a high proliferative rate for several passages, as well as trilineage capacity of differentiation. Recently, it has been demonstrated that cytoskeletal organization influences stem cell biology. Among molecules able to modulate its dynamics, Cytochalasin B (CB), a cyto-permeable mycotoxin, influences actin microfilament polymerization, thus affecting several cell properties, such as the ability of MSCs to differentiate towards a specific commitment. Here, we investigated for the first time the effects of a 24 h-treatment with CB at different concentrations (0.1–3 μM) on hWJ-MSCs. CB influenced the cytoskeletal organization in a dose-dependent manner, inducing changes in cell number, proliferation, shape, and nanomechanical properties, thus promoting the osteogenic commitment of hWJ-MSCs, as confirmed by the expression analysis of osteogenic/autophagy markers
    corecore