304 research outputs found

    Testing the LCDM model (and more) with the time evolution of the redshift

    Full text link
    With the many ambitious proposals afoot for new generations of very large telescopes, along with spectrographs of unprecedented resolution, there arises the real possibility that the time evolution of the cosmological redshift may, in the not too distant future, prove to be a useful tool rather than merely a theoretical curiosity. Here I contrast this approach with the standard cosmological procedure based on the luminosity (or any other well-defined) distance. I then show that such observations would not only provide a direct measure of all the associated cosmological parameters of the LCDM model, but would also provide wide-ranging internal consistency checks. Further, in a more general context, I show that without introducing further time derivatives of the redshift one could in fact map out the dark energy equation of state should the LCDM model fail. A consideration of brane-world scenarios and interacting dark energy models serves to emphasize the fact that the usefulness of such observations would not be restricted to high redshifts.Comment: In final form as to appear in Physical Review D. 12 pages 6 figure

    A new species of mudfish, Neochanna (Teleostei: Galaxidae), from northern New Zealand

    Get PDF
    A new species of mudfish, Neochanna, is described from Northland. Neochanna heleios n.sp. is known from only three ephemeral wetland sites on the Kerikeri volcanic plateau and is abundant only at the type locality. The new species has a head resembling that of the brown mudfish, Neochanna apoda, and a caudal region resembling that of the black mudfish, Neochanna diversus. It can be distinguished from all Neochanna species in having a reduced number of principal caudal fin rays (13 or less). Morphometric and meristic comparisons with N. apoda and N. diversus are provided

    Metal containing polysiloxane derivatives as catalysts

    Get PDF

    Spectrometer system for optical reflectance measurements

    Get PDF
    A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa

    New limits on a cosmological constant from statistics of gravitational lensing

    Get PDF
    We present new limits on cosmological parameters from the statistics of gravitational lensing, based on the recently revised knowledge of the luminosity function and internal dynamics of E/S0 galaxies that are essential in lensing high-redshift QSOs. We find that the lens models using updated Schechter parameters for such galaxies, derived from the recent redshift surveys combined with morphological classification, are found to give smaller lensing probabilities than earlier calculated. Inconsistent adoption of these parameters from a mixture of various galaxy surveys gives rise to systematic biases in the results. We also show that less compact dwarf-type galaxies which largely dominate the faint part of the Schechter-form luminosity function contribute little to lensing probabilities, so that earlier lens models overestimate incidents of small separation lenses. Applications of the lens models to the existing lens surveys indicate that reproduction of both the lensing probability of optical sources and the image separations of optical and radio lenses is significantly improved in the revised lens models. The likelihood analyses allow us to conclude that a flat universe with Omega=0.3(+0.2-0.1) and Omega+Lambda=1 is most preferable, and a matter-dominated flat universe with Lambda=0 is ruled out at 98 % confidence level. These new limits are unaffected by inclusion of uncertainties in the lens properties.Comment: 30 pages, 9 ps figures, AASTeX, ApJ in pres

    The Millennium Galaxy Catalogue: morphological classification and bimodality in the colour-concentration plane

    Full text link
    Using 10 095 galaxies (B < 20 mag) from the Millennium Galaxy Catalogue, we derive B-band luminosity distributions and selected bivariate brightness distributions for the galaxy population. All subdivisions extract highly correlated sub-sets of the galaxy population which consistently point towards two overlapping distributions. A clear bimodality in the observed distribution is seen in both the rest-(u-r) colour and log(n) distributions. The rest-(u-r) colour bimodality becomes more pronounced when using the core colour as opposed to global colour. The two populations are extremely well separated in the colour-log(n) plane. Using our sample of 3 314 (B < 19 mag) eyeball classified galaxies, we show that the bulge-dominated, early-type galaxies populate one peak and the bulge-less, late-type galaxies occupy the second. The early- and mid-type spirals sprawl across and between the peaks. This constitutes extremely strong evidence that the fundamental way to divide the luminous galaxy population is into bulges and discs and that the galaxy bimodality reflects the two component nature of galaxies and not two distinct galaxy classes. We argue that these two-components require two independent formation mechanisms/processes and advocate early bulge formation through initial collapse and ongoing disc formation through splashback, infall and merging/accretion. We calculate the B-band luminosity-densities and stellar-mass densities within each subdivision and estimate that the z ~ 0 stellar mass content in spheroids, bulges and discs is 35 +/- 2 per cent, 18 +/- 7 and 47 +/- 7 per cent respectively. [Abridged]Comment: Accepted for publication in MNRAS, 23 pages, 17 figures. Comments welcome. MGC website is at: http://www.eso.org/~jliske/mgc

    Is There a Fundamental Line for Disk Galaxies?

    Get PDF
    We show that there are strong local correlations between metallicity, surface brightness, and dynamical mass-to-light ratio within M33, analogous to the fundamental line of dwarf galaxies identified by Prada & Burkert (2002). Using near-infrared imaging from 2MASS, the published rotation curve of M33, and literature measurements of the metallicities of HII regions and supergiant stars, we demonstrate that these correlations hold for points at radial distances between 140 pc and 6.2 kpc from the center of the galaxy. At a given metallicity or surface brightness, M33 has a mass-to-light ratio approximately four times as large as the Local Group dwarf galaxies; other than this constant offset, we see broad agreement between the M33 and dwarf galaxy data. We use analytical arguments to show that at least two of the three fundamental line correlations are basic properties of disk galaxies that can be derived from very general assumptions. We investigate the effect of supernova feedback on the fundamental line with numerical models and conclude that while feedback clearly controls the scatter in the fundamental line, it is not needed to create the fundamental line itself, in agreement with our analytical calculations. We also compare the M33 data with measurements of a simulated disk galaxy, finding that the simulation reproduces the trends in the data correctly and matches the fundamental line, although the metallicity of the simulated galaxy is too high, and the surface brightness is lower than that of M33.Comment: 14 pages, 14 figures (5 in color). Accepted for publication in Ap

    Virgo cluster early-type dwarf galaxies with the Sloan Digital Sky Survey. IV. The color-magnitude relation

    Full text link
    We present an analysis of the optical colors of 413 Virgo cluster early-type dwarf galaxies (dEs), based on Sloan Digital Sky Survey imaging data. Our study comprises (1) a comparison of the color-magnitude relation (CMR) of the different dE subclasses that we identified in Paper III of this series, (2) a comparison of the shape of the CMR in low and high-density regions, (3) an analysis of the scatter of the CMR, and (4) an interpretation of the observed colors with ages and metallicities from population synthesis models. We find that the CMRs of nucleated (dE(N)) and non-nucleated dEs (dE(nN)) are significantly different from each other, with similar colors at fainter magnitudes (r > 17 mag), but increasingly redder colors of the dE(N)s at brighter magnitudes. We interpret this with older ages and/or higher metallicities of the brighter dE(N)s. The dEs with disk features have similar colors as the dE(N)s and seem to be only slightly younger and/or less metal-rich on average. Furthermore, we find a small but significant dependence of the CMR on local projected galaxy number density, consistently seen in all of u-r, g-r, and g-i, and weakly i-z. We deduce that a significant intrinsic color scatter of the CMR is present, even when allowing for a distance spread of our galaxies. No increase of the CMR scatter at fainter magnitudes is observed down to r = 17 mag (Mr = -14 mag). The color residuals, i.e., the offsets of the data points from the linear fit to the CMR, are clearly correlated with each other in all colors for the dE(N)s and for the full dE sample. We conclude that there must be at least two different formation channels for early-type dwarfs in order to explain the heterogeneity of this class of galaxy. (Abridged)Comment: 17 pages + 12 figures. Accepted for publication in A

    A search for ultra-compact dwarf galaxies in the NGC 1023 group of galaxies

    Full text link
    We present a photometric search for UCD candidates in the nearby galaxy group NGC 1023 (d=11 Mpc) -- the poorest environment searched for UCDs yet --, based on wide field imaging with CFHT. After photometric and morphological selection, we obtain a sample of 21 UCD candidates with -12<M_V<-11 mag, if located at NGC 1023's distance. From spectroscopy taken at Calar Alto observatory, we identify the UCD candidate in closest projection to NGC 1023 as an emission line background galaxy. Our photometric data show that in the NGC 1023 group, the mass spectrum of analogs to Fornax/Virgo UCD is restricted to about 1/4 of the maximum Fornax/Virgo UCD mass. More spectroscopy is needed to further constrain the mass range of UCDs in this galaxy group.Comment: 5 pages, 4 figures, to appear in the proceedings of ESO Astrophysics Symposia: "Groups of Galaxies in the Nearby Universe", eds. I. Saviane, V. Ivanov, J. Borissov
    • 

    corecore