research

Testing the LCDM model (and more) with the time evolution of the redshift

Abstract

With the many ambitious proposals afoot for new generations of very large telescopes, along with spectrographs of unprecedented resolution, there arises the real possibility that the time evolution of the cosmological redshift may, in the not too distant future, prove to be a useful tool rather than merely a theoretical curiosity. Here I contrast this approach with the standard cosmological procedure based on the luminosity (or any other well-defined) distance. I then show that such observations would not only provide a direct measure of all the associated cosmological parameters of the LCDM model, but would also provide wide-ranging internal consistency checks. Further, in a more general context, I show that without introducing further time derivatives of the redshift one could in fact map out the dark energy equation of state should the LCDM model fail. A consideration of brane-world scenarios and interacting dark energy models serves to emphasize the fact that the usefulness of such observations would not be restricted to high redshifts.Comment: In final form as to appear in Physical Review D. 12 pages 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020